REPORT DOCUMENTATION PAGE oM e B 5788

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-03-2007 Final Report March-2004 to Feb-2007
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Heuristic Design Information Sharing Framework for Hard Discrete FA9550-04-1-0110

Optimization Problems

5b. GRANT NUMBER

6RNM25
5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S) 5d. PROJECT NUMBER

Jacobson, Sheldon H., Ph.D. FQ867100400698

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

AND ADDRESS(ES) REPORT NUMBER

University of Illinois

Department of Computer Science DISTRIBUTION STATE MENTA

Thomas M. Siebel Center for Computer Science Approved for ; -

201 N Goodwin Ave (MC-258) p%lSt ib ? PLﬁDIIIC R_sl%ase

Urbana, IL 61801-2302 ution unlimite

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

Fariba Fahroo, Ph.D., Don Hearn, Ph.D.
Program Manager: Optimization & Discrete Mathematics

Air Force Office of Scientific Research 11, SPONSOR/MONITOR’S REPORT
Suite 325, Room 3112 NUMBER(S)

875 Randolph Street, Arlington, VA 22203-1768

12, DISTRIBUTION / AVAILABILITY STATEMENT

Public Availability AFRT.SR-AR-TR-07-0143

e 20070516069

None

14. ABSTRACT

This project studied and developed simultaneous generalized hill climbing (SGHC) algorithms as an algorithmic framework for
information sharing in discrete optimization problems. This framework has been used to gain new insights into neighborhood
structure designs that allow different neighborhood functions to share information when using the same heuristic applied to the same
problem. The results reported from this project introduce the SGHC algorithm framework for information sharing across sets of
related discrete optimization problems, provide guidelines on how to use and to design neighborhood functions that results in
effective performance of local search algorithms, and describe how tabu search can be effectively used to improve the performance of
generalized hill climbing algorithms. Extensive computationally results arte reported on a large variety of test bed, large-scale, real-
world discrete optimization problems. The primary application for this research were a military combat search and rescue problems,
where several possible search and rescue strategies must be considered to determine the optimal strategy, and a homeland security
aviation security baggage screening problems, where several different baggage screening strategies at a set of airports must be
considered to determine the optimal strategy for the entire system. Both these problems are intractable due, in part, to the
exponentially large number of possible solutions that exist and must be evaluated to identify those that are optimal.

15. SUBJECT TERMS
Local Search, Heuristics, Discrete Optimization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE
OF ABSTRACT OF PAGES PERSON
Sheldon H. Jacobson
a. REPORT b. ABSTRACT c. THIS PAGE uu 19b. TELEPHONE NUMBER
Uuu uu uu (include area code)
217-244-7275

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

¥ 3 2

Submitted to:

Principal Investigator:

Grant Number:

FINAL TECHNICAL REPORT

Fariba Fahroo, Ph.D.

Don Hearn, Ph.D.

Program Manager: Optimization and Discrete Mathematics
Directorate of Mathematics and Information Sciences

Air Force Office of Scientific Research

875 North Randolph Street

Arlington, VA 22203

Sheldon H. Jacobson, Ph.D.

Director, Simulation and Optimization Laboratory
Department of Computer Science

University of Illinois

Urbana, IL 61801-2302

(217) 244-7275 (office)

shj@uiuc.edu

netfiles.uiuc.edu/shj/www/shj.html

FA9550-04-1-0110

3
TABLE OF CONTENTS

Report Documentation Page et eeeeneereeeneeee 1
COVET PAGE ..veeueiteeririiererrrre ettt s bbb s s e e s e b st s bn b s bn e s 2
TablE OF CONMENES ...vvveeeieireerieiririeeret ettt et es ettt n e e bbb srsaer e s b sr b 3
EXECULIVE SUIMMIATY ..ooverieiiviererie e see e e s soe e esr et seesaesreeee s sbe s b e s s s s bssaa s s b e s an b e b saes 4
1. Generalized Hill Climbing AIZOrithmsc.ccoeveimierinecinecrer s 5
2 Tabu Guided Generalized Hill Climbing Algorithmscccoceeoniiveiiniininincnniieincicns 10
3 Simultaneous Generalized Hill Climbing AlZorithmsccccevervconnniicnniivcnnnnnenn 15
4. Neighborhood Function Design Propertiescocuoveerirenrcrecerneenreennreresrecresenesesesnsnens 25
5 Threshold Analysis Performancecccocovecereereccennernrnnenn et st sessssessesasssesassnas 34
6 Other Research RESUIScocviviiiicinircitctiee ettt 41
RETEIEICES .evrvenreeeriiriiienie et st st bbb bbb e s b bbb st be b 43
Contributing PerSONNEL........ccciriiemieirrecenrrnrreit vttt ebe s sr s n s 46
TLANSIEIONS .eeeverieeieeerititeererserererersteere s eesesresessreasrecseere e ese e s snsssteeras e st enesse e e erentesnrenesabtssbssresnnes 46
PUDLICALIONS 1..veveeerresir et reeserccireees e et st s bbb s sas s e nssan st re s b s s s b 47

AAWATAS/HONOTS «oveereeiiecet et ee et tee e et st vssbe e s stebees et sssressabsaessssesarsessses e assaesasesssanessaresesssnsenssnsans 48

S

4
EXECUTIVE SUMMARY

The research conducted under this grant focused on an extensive mathematical analysis of algorithms within
the generalized hill climbing algorithm framework for addressing intractable discrete optimization problems.
The major technical accomplishments achieved include

i) a rigorous analysis of generalized hill climbing algorithms that focused on visiting rather than
convergence criteria, which more closely matched how such algorithms are used in practice.

ii) an introduction of tabu guided generalized hill climbing algorithms, which shows how tabu search can
be used to enhance the performance of generalized hill climbing algorithms

iii} a rigorous analysis of simultaneous generalized hill climbing algorithms that focused on performance
criteria and conditions, .

iv) arigorous analysis of neighborhood properties for generalized hill climbing algorithms,

v) an introduction and analysis of Sacceptable finite-time performance measures for generalized hill
climbing algorithms,

Several other problems were studied during the grant period, including a complexity analysis of discrete
random number generators based on the alias method, aviation security system design and optimization
problems, and a pediatric vaccine formulary design problem.

All the accomplishments resulting form the research reported under this grant are documented in several
archival journal articles and conference proceedings. Many of the results have also been presented at national
and international conferences, and have won awards for their contribution. Several of the results of this
research have been transitioned to industrial and government agencies, including Austral Engineering and
Software Inc., and the Homeland Security Institute within the United States Department of Homeland
Security.

Three Ph.D. dissertations were completed during the period of the grant. Dr. Laura Ann McLay
successfully defended and submitted her Ph.D. dissertation "Designing Aviation Security Systems: Theory
and Practice" in May 2006. Dr. Hemanshu Kaul successfully defended and submitted his Ph.D. dissertation
"Topics in Stochastic Combinatorial Optimization and Extremal Graph Theory" in August 2006. Major
Shane N. Hall, USAF, successfully defended and submitted his Ph.D. dissertation " The Design and Analysis
of Pediatric Vaccine Formularies: Theory and Practice " in August 2006.

5

1. Generalized Hill Climbing Algorithms

Generalized hill climbing algorithms provide a framework for modeling several local search algorithms for
hard discrete optimization problems. Jacobson and Yucesan (2004a) introduce and analyze generalized hill
climbing algorithm performance measures that reflect how effectively an algorithm has performed to date in
visiting a global optimum and how effectively an algorithm may perform in the future in visiting such a
solution. These measures are also used to obtain a necessary asymptotic convergence (in probability)
condition to a global optimum, which is then used to show that a common formulation of threshold accepting
does not converge. These measures assume particularly simple forms when applied to specific search
strategies such as Monte Carlo search and threshold accepting.

To describe these results, the following definitions are needed. For a discrete (minimization) optimization
problem, define the solution space, £, as a finite set of all possible solutions. Define an objective function f:
£2 - [0, +o0] that assigns a non-negative value to each element of the solution space. Two important
components of GHC algorithms are the neighborhood function, n. 2 — 22 where n(w) c Rforall w € £,
and the hill climbing random variables Ry: 2 x 2 — 9, k = 1,2,... . For each solution @ e (2 the
neighborhood function 7(w) defines a set of solutions that are close to @ (Aarts and Korst 2002). The
neighborhood function is assumed to be symmetric (i.e., if @’ € n(@”), then @” € Y w’) for all w’,0"e Q)
and that @ € n(w) for all ® € £ Moreover, at each iteration of a GHC algorithm, a solution is randomly
generated among all neighbors of the current solution by a neighborhood probability mass function, where the
resulting random variables are independent (given the current solution). For example, neighbors are said to be
generated uniformly at each iteration of a GHC algorithm execution if, for all @ € £2, with @' € 7(w),

P{w' is selected as the neighbor of @ at a given iteration of a GHC algorithm}=1/ | nw) |.

Without loss of generality, assume that if @’ € 7(), then this probability is strictly positive.

The GHC algorithm is described below in pseudo-code. By definition, the hill climbing random
variables, R;, which are assumed to be independent, map points in (2 to distributions that determine
whether a randomly generated neighboring solution is accepted during a particular inner loop iteration
associated with outer loop iteration k. The stopping criterion for the inner loops, STOP INNER, determines
when the hill climbing random variable index k increments by one, hence a new hill climbing random variable
is used to accept or reject neighboring solutions. By setting the STOP INNER criterion to check whether the
current solution is a local optimum, the hill climbing random variable changes only when a local optimum is
visited; this will be further discussed below.

Although the range of the hill climbing random variables can be the set of real numbers, % in practice
they are typically restricted to the set of non-negative real numbers, %", (which is what will be assumed for
the rest of the paper). Therefore, for minimization problems, when a randomly generated neighboring
solution has objective function value greater than the current solution, then the neighboring solution is
accepted (hence becomes the new current solution) if the difference between the objective function values is
not too large (i.e., smaller than the value generated for the hill climbing random variable). This concept of
accepting an inferior solution is the origin for the name “hill climbing”.

Define a neighborhood function 7 and a set of hill climbing random variables Ry
Set the iteration indices i = 0, k=1 and select an initial solution &X0) € 2
Repeat
Repeat
Generate a neighboring solution w € m(a(?)) and compute & a(?),») = w) - Lax(i))
Generate an observation R from the random variable Ry{ (i), @)
If R 2 & o(i),w), then a(i+1) « w; Else (i.e., R < & aXi),w)), then a(i+1) « (i)
ieitl
Until STOP INNER
k<« k+1
Until STOP OUTER

Assume that the hill climbing random variables have finite means and finite variances (i.e., E[|[R{(a(i),®)|] <
+oo and Var[Ry(aXi),w)] <+ for all o(i) € 2, o € n(w()), k=1,2,...,i=12,...).

The neighborhood function establishes relationships between the solutions in the solution space, hence
allows the solution space to be traversed or searched by moving between solutions. To ensure that the solution
space is not fragmented, assume that all the solutions in the solution space (with neighborhood function 7 and
neighborhood probability mass function h(w)) are reachable (i.e., for all @',@" € £, there exists a set of
solutions @y,®;,...,0, € 2 such that @, € n(w.;), r = 1,2,...,mt1, where o' = ap and ®" = @,.;). If all
solutions in the solution space are reachable, then the solution space (with neighborhood function 7) is said to
be reachable. Note that solution space fragmentation can be a problem, for example, in some
implementations of tabu search with a deterministic tabu list. Fox (1993) describes a clever method on how

Y 1 6
| to avoid fragmentation altogether.

The objective function, f, and the neighborhood function, 7, allow the solution space, €2 to be
decomposed into three mutually exclusive and collectively exhaustive sets:

- aset of global optima, G = {w* € 2 flo*) <Aw) forall w e 2}
- aset of local (but not global) optima, L = L(7) = {w € 2\G: w) S Aw’) forall w’ € 1(w)}
- aset of hill solutions, H = 02\ (GUL).

Therefore GUL are the set of local optima in £2associated with neighborhood function 7, where by definition,
R=GULUHWthGNL=0,GNnH=,and L ~n H=. Note also that forall w € G, n(w) "L =0,
and for all w € L, n(w) N G = (i.e., a global optimum and a local optimum cannot be neighbors).

In practice, the best solution obtained over the entire GHC algorithm run, not just the final solution, is
reported. This allows the algorithm to aggressively traverse the solution space visiting many inferior
solutions en route to a globally optimal solution, while retaining the best solution obtained through the entire
GHC run. By design, GHC algorithms are sampling procedures over the solution space 2. For example,
Monte Carlo search generates independent samples (with replacement) from the solution space, while
simulated annealing (Henderson et al. 2003) generates samples guided by the neighborhood function, the
objective function, and the temperature parameter. More specifically, simulated annealing can be described
as a GHC algorithm by setting Ry(aXi),) = —t(k)In(v)), i) € 2, o € n(a(D)), k= 1,2,..., where (k) is the
temperature parameter (hence, defines a cooling schedule as #k) — 0) and {;} are independent and
identically distributed U(0,1) random variables. Note that in the “accept improving or hill climbing moves”
step of the GHC algorithm pseudo-code, for the simulated annealing hill climbing random variable, Ry aXi),®)
> & oi),w) becomes v; < exp{-& (i), w)/1(k)}, which is the standard form in which the simulated annealing
hill climbing acceptance probability is described (Aarts and Korst 2002). Other algorithms that can be
described using the GHC framework include threshold accepting (Dueck and Scheuer 1990), some simple
forms of tabu search (Glover and Laguna 1997), Monte Carlo search, deterministic local search, the noising
method (Charon and Hudry 2001), and Weibull accepting (see Jacobson et al. 1998 and Johnson and Jacobson
2002a,b for a discussion on how these algorithms can be fit into the GHC algorithm framework).

The iterations of a GHC algorithm can be classified using the concept of macro iterations. A macro
iteration is a set of consecutive iterations that move the algorithm from any element of GLL to any element of
G UL (including itself), where the solutions at any intervening iterations are (not necessarily distinct) elements
of H. From the pseudo-code presented above, by requiring that the STOP INNER criterion checks whether the
current solution is a local optimum, then the outer loops correspond to macro iterations. If there are a
polynomial number of neighboring solutions of the current solution or the neighborhood of the current
solutions can be searched in polynomial time, then verifying that the current solution is a local optimum can
be done in polynomial time. Assume that this is the case, hence local optimality can be verified in
polynomial time.

Using this STOP INNER criterion, at macro iteration k fixed, the iterations can be modeled as a
homogeneous discrete-time Markov chain, with | Ql X | .Ql transition matrix

Pio B Py
Pt = PLkG PLkL PLkH >

Pic Pi Py
where the entries of P* denote the single iteration transition probabilities between all elements of 2. Without
loss of generality, assume that the GHC algorithm run is initialized at a solution &X0) € L, since local search
can be applied from any element in (2, and the solution space is reachable. This places a restriction on the
classes of discrete optimization problems that can be studied, since if a local optimum cannot be obtained in
polynomial time in the size of the problem instance, then initializing the GHC algorithm run in this way may
not be feasible (see Johnson et al. 1988, Jacobson and Solow 1993). In addition, if local search is applied and
the local optimum obtained is a global optimum, then the problem is solved, though this may not be known

until further iterations are executed.
In the pseudo-code presented above, for k fixed, the macro iterations can also be modeled as a

homogeneous discrete-time Markov chain, with a (|G|+|L|) x (|G|+[L|) macro iteration transition matrix,
400 . +o0)
Py [(P) WPy + Pog Py [(P) 1Py, + Py
— Jj=0 Jj=0

PAI/; - +00 oo
PLIL[%(P;H)’]PJG + P PLkH[ZO(PI-IICH)j]PI];L +Pf
J= J=

where the entries represent the probability of a GHC algorithm moving from any element of GUL to any
element of GUL (including itself), passing only through elements of H (Sullivan and Jacobson 2001). If Pf,
is the zero matrix, then set (PHkH)’ = I, the identity matrix. Matrix PA'} can be simplified, since for all @ € G,
mw) L=, and for all € L, n(w) n G = (i.e., a global optimum and a local optimum cannot be
neighbors), hence PY and P}, are both zero matrices. Moreover, if a global optimum cannot be a neighbor

of another global optimum, and a local optimum cannot be a neighbor of another local optimum, then PG"G

and P} are both diagonal square matrices.

Consider a GHC algorithm applied to an instance of a discrete optimization problem. Assume that
R aXi),w) = 0 for all &(i) € 2, w € n(a(i)), for all outer loop, macro iterations £ = 1,2,.... At each macro
iteration k, define the event

B(k) ={The algorithm does not visit any element of G over the first k macro iterations} €))
and its complementary event
B(k) ={The algorithm visits G over the first ¥ macro iterations}.)]

By definition, B(k) o B(k+1) for all macro iterations &, hence {B(k)} is a telescoping, non-increasing
sequence of events in k. Therefore, by the Monotone Convergence Theorem (Billingsley 1979),

P{B(k)} — P{B} = P{ :r:] Bk} as k —> o, 3)

Over the first £ macro iterations, the algorithm visits k solutions, {@, @,, ..., ,} < GUL. Define /‘ to be
the minimum objective function value among these solutions and & to be the associated solution (i.e., /* =
Ay with of = argmin{flw), j = 1,2,...,k}). In practice, the best solution to date (i.e., @) is reported. The
key issue is whether o € G. If o € G, then the algorithm should be terminated no later than macro iteration
k, while if & ¢ G, then it would be desirable to determine whether the algorithm will at some future macro
iteration visit a solution in G. Therefore, P{a* € G} = P{B(k)} provides an algorithm performance measure
for the solutions obtained within the first £ macro iterations.

To establish the relationship between the convergence of a GHC algorithm and the event B, the following
definition is needed.

Definition 1: A GHC algorithm converges in probability to G if P{C(k)} — 1 as k — +oo, where C(k) = {a
€ G } = {The algorithm is at an element of G at macro iteration k}.

Therefore, given an initial solution &{(0)eL, if a GHC algorithm converges in probability to G (as k—> +o0),
then P{B°}=1. Equivalently, if P{B} < 1, then the algorithm does not converge in probability to G.

In light of these observations, the false negative problem asks whether a GHC algorithm will eventually
visit G, given that the algorithm, after executing a finite number of macro iterations, has yet to visit G. The
false negative probability is formally defined.

Definition 2: For a GHC algorithm, the false negative probability at macro iteration k is P{B° IB(k)},
provided P{B(k)} > 0.

The false negative probability at macro iteration k provides a measure for the effectiveness of a GHC
algorithm, namely the ability of an algorithm to visit G beyond macro iteration k. In particular, if P{B°} is
small, then one can use the false negative probability to assess whether a GHC algorithm will eventually visit
G; if the false negative probability at macro iteration £ is sufficiently close to zero, then the algorithm may be
terminated.

A necessary convergence condition for GHC algorithms can be obtained. To see this, recall that P{B(0)}
=1 (i.e., all GHC algorithm runs are initialized at an element of L). Furthermore, unless otherwise stated,
assume that P{B“(k)} <1 for all macro iterations k= 1,2,....

For macro iteration k, define the conditional probability

r(k) = P{B(k) | B(k-1)} = P{C(K) | B(-1)}. @

This probability can be used to quantify the false negative probability. Lemma 1 expresses the

relationship between (4) and (1).

Lemma 1 (Jacobson and Yucesan 2004a): Given a GHC algorithm initialized at solution &(0) € L,
k
@) P{B(k)} =TT [l -#()] for all macro iterations k.

j=l
(ii) P{B} = n [1 = ().

Theorem 1 provides a closed form expression for the false negative probability.

s

8

Theorem 1 (Jacobson and Yucesan 2004a): Given a GHC algorithm initialized at solution &(0) € L, for all
macro iterations k with P{B(k)} > 0,
+e0
P | By =1~ 11 U101)
J=k+l1

Theorem 2 provides upper and lower bounds for the false negative probability.
Theorem 2 (Jacobson and Yucesan 2004a): Given a GHC algorithm initialized at initial solution &(0) € L,
then for all macro iterations & with P{B(k)} > 0,

1-epl- 5 O} <PE | By <1-exp(- 5 LGN/ 17001}, ©)
J=kt J=k+

To compute the false negative probability for both convergent and nonconvergent GHC algorithms,
Proposition 1 establishes the relationship between convergence in probability to G and visits to G in
probability.

Proposition 1 (Jacobson and Yucesan 2004a): If a GHC algorithm converges in probability to G, then the
GHC algorithm visits G in probability (i.e., P{B* | B(k)} = 1 for all macro iterations k = 1,2,... with P{B(k)}
> 0).

)Proposition 2 provides necessary and sufficient conditions for a GHC algorithm to visit G in probability
(i.e., the false negative probability is one for all macro iterations).
Proposition 2 (Jacobson and Yucesan 2004a): A GHC algorithm visits G in probability iff X=;, #(j)=to0.

Proposition 3 establishes the relationship between a GHC algorithm visiting G in probability and P{B‘}.
Proposition 3 (Jacobson and Yucesan 2004a): A GHC algorithm visits G in probability iff P{B} = 1.

Theorem 3 summarizes the relationship between P{B}, the false negative probabilities, r(k), visits G in
probability, and convergence in probability to G. It follows directly from Propositions 1, 2, and 3.

Theorem 3: Given a GHC algorithm initialized at initial solution aX0) € L, consider the expressions

(D) P{C(k)} > 1 as k — +oo (converges in probability to G).

(D2) P{B° fB(k)} = 1 for all macro iterations k (visits G in probability).
(D3) P{B‘} =1 (visits G in probability).

(D4) Zj=12,... 1(j) = +oo for all macro iterations £.

Then (D1) = (D2) < (D3) < (D4).

Theorem 3 provides three necessary conditions for the convergence of a GHC algorithm. The only
restriction on how the GHC algorithm traverses the solution space is that P{B(k)} > 0 for all macro iterations
k=1,2,... . This restriction means that there is no finite-time convergence to G with probability one. Note
that from Lemma 1, if P{B} = Il-, . [1-#()] > 0, then from Theorem 3, the GHC algorithm does not
converge in probability to G. Moreover, since C(k) c B°(k) for all macro iterations £ = 1,2,..., then P{C(k)} <
1 =TI, . [1-(j)] for all macro iterations £.

Closed-form expressions for (k) can be obtained such that the results reported above can be applied to
GHC algorithms, including the computation of the false negative probability and condition (D4) in Theorem
3. To obtain such an expression, the following definition is needed to represent »(k) as a function of the
macro iteration transition matrix, Py; .

Definition 3: For all @ € L, at macro iteration k, Q(w,k) = B(k) n {The algorithm is at solution @ at macro
iteration k} with g(@,k) = P{Q(w,k)}.

Theorem 4 provides a closed-form expression for #(k) in terms of the macro iteration transition matrix.
This expression is used later to identify properties of non-convergent GHC algorithms.
Theorem 4 (Jacobson and Yucesan 2004a): Given a GHC algorithm initialized at initial solution a0)eL,
then for all macro iterations £,

© J
0= T 5 glak) ry (@) [3(Ph) 1Ploe, o).)
W, € o€ j=0

The closed-form expression for r(k) in Theorem 4 can be expressed in terms of the hill climbing random

variable R;. To see this, forall w; € G, w; e L, w3, w; € H,

(1/|77(w2)|)P{Rk (0,,0)2 8(0,,0)}, wenlw,)NH
0, wen(w,)NnH

PLkH(mzsm)={ 8)

and

r__—___'————'—‘*i’i.i'ﬁ’

' 9
| / P(R)26 0(3,2)>0
(I??(%)l) {Ri(w3,0,) 2 6(05,0,)}, o, en(@) " H
o(w;,0,)<0
P;H(a’sswﬁ:‘l/ln(%)l’ {a)4677(a)3)ﬂH . ©)
w, e H
o, g(w;) N H

Moreover, forall ;€ G, w € H,

U/|n(@)), o en(@)NG

0, o en(w)nG (10)

P},‘G(a),a)l) ={

To determine whether X, . (k) converges, only the most dominant terms in (7) need to be considered
(i.e., the terms in (7) that approach zero the slowest as k — +w). From (8)-(10), the most dominant terms in
(7) are O(P{Ri(@,,) > & @ w)}) for m; € L, ® € {w;) N H (as Ry —>p 0 as k — +o0). Therefore, if the hill
climbing random variables are defined such that the probability of moving from any local optimum in a single
iteration converges to zero sufficiently fast (as the number of macro iterations approaches infinity) so that the
infinite sum (over k) of the »(k) converges (i.e., (D4)), then from Theorem 3, the resulting GHC algorithm will
not converge in probability to G. This necessary condition provides a simple feature to check for a given
GHC algorithm, hence can be used to determine when a particular GHC does not converge.

To use this result in practice, P{Ry(@, 0) = Xw,,)}, w2 € L, ® € n{@w;) N H, can be bounded above
using the first and second moments of R @, @). For example, from Markov’s inequality,

P{R{@,0) 2 & @,0)} < E[R @2, »)] | & @,) 1n
for w, € L, w € n{w;)"\H, (where & w,, w) > 0). Moreover, by the one-sided Chebyshev inequality,
P{R{w,0) 2 & 0,)} < Var[R @y,)]/ [Var[R{ 0,)] + (& w3, @) — E[R @3,)])’]. (12)

If either of these upper bounds approaches zero sufficiently fast such that X5 r(k) < +oo, then the GHC
algorithm does not converge in probability to G.

To illustrate the use of these bounds, consider a simulated annealing algorithm with temperature
parameters #(k) = 1/k’. Then E[R{w, w)] = 1/K* and from (11), P{R{0,,0) > Kano)} < 1/ (* &ay0)),

+c0
which implies that ' r(k) < +eo. Therefore, from Theorem 3, this simulated annealing algorithm does not
k=1
converge in probability to G. On the other hand, for a simulated annealing algorithm with temperature
parameters #(k) = 1/k, E{R(w,,)] = V/k and from (11), P{R{@;,0) > & @,w)} £ 1/ (k & @, @)), which is not
sufficient (from Theorem 3) to show that this simulated annealing algorithm does not converge in probability
to G. However, Var[R{ v, w)] = 1/k* and from (12), P{R{ @2, ») = &an,@)} < (112 | [V + (X 0 @) — 1/k)]
= O((1/k& wy, w))*) for k large, which implies that ;-5 r(k) < +w. Therefore, from Theorem 3, this
simulated annealing algorithm does not converge in probability to G.

The theoretical results described above can be used to assess the performance of various GHC algorithms.
In particular, the performance of four GHC algorithms, Monte Carlo search, random-restart local search,
threshold accepting, and simulated annealing can be evaluated.

Monte Carlo search is the process of randomly generating a large set of solutions in the solution space and
taking the best solution among those generated. Theorem 3 implies that the false negative probability is one
(for all macro iterations) for Monte Carlo search. To see this, Monte Carlo search can be described as a GHC
algorithm by setting n(@) = 2 for all @ € 2, and R, = max{|fw)-A®"), @ € Q, o' € n(w)} for all macro
iterations k = 1,2,.... If p(G) = |G|/ (G|+L)), then (k) = p(G). Therefore, P{B(k)} = [1-p(G)]". For macro
iterations j and &, with m >k,

P{B(m) | B} =1 - [1-p(G)] ™,
which approaches one as m — +o. Moreover, from Theorem 3, Z-15 . #() = £=12,.. p(G) = +o . This means
that Monte Carlo search visits G in probability as k — +00, However, P{C(k)} = p(G) for all macro iterations
k, hence Monte Carlo search does not converge in probability to G (i.e., from Theorem 3, (D2), (D3), and
(D4) all hold, but (D1) is not satisfied).
Random-restart local search (or multi-start local search; see Marti 2003) combines Monte Carlo search
and local search, by randomly selecting a new initial solution every time a local search algorithm terminates

eGOGOGOGSGSHHGHHSSSSHESSSHESHHE=HHNEGSE

10

at a local optimum. The analysis for Monte Carlo search also shows that the false negative probability is one
(for all macro iterations) for random-restart local search, by redefining p(G) to be the probability that a
randomly generated initial solution in £ will terminate at an element of G. Moreover, random-restart local
search will not converge in probability to G (i.e., from Theorem 3, (D2), (D3), and (D4) all hold, but (D1) is
not satisfied).

Threshold accepting is a particular GHC algorithm with Ri(aXi),) = #(k), i) € 2, o € 7(x3)), for
macro iteration k, where #(k) — 0 as k — +o. Therefore, there exists £ > 0 sufficiently small and a macro
iteration ko such that |t(k)i < gand P{R(ai),w) > & eXi),w)}= 0 for all (i) € L, € 1(aXi)), and all k > ko,
hence (D4) in Theorem 3 does not hold. This implies that this common implementation of threshold
accepting does not converge in probability to G. However, if #(k) is set such that it does not approach zero,
hence #(k) = & for some & > 0 and for all macro iterations &, then (D4) in Theorem 3 may hold and the
probability of a false negative is one at all macro iterations k. However, setting #(k) in this way may not be
feasible in practice, since it requires full knowledge of the solution space (with respect to the depth of all local
and global optima; see Hajek 1988). Although the given formulation of threshold accepting does not
converge in probability to G, it often yields satisfactory results in practice (Franz et al. 2001, Abboud et al.
1998, Nissen and Paul 1995). This observation further supports the belief that asymptotic convergence is not
necessarily a good predictor of finite-time performance.

Simulated annealing is a particular GHC algorithm with Ry(aXi),w) = — t(k)in(v;), aXi) € 2, w € n(aXi)), k
=1,2,..., where (k) is the temperature parameter (hence, defines a cooling schedule as #k) — 0) and {v;} are
independent and identically distributed U(0, /) random variables. The necessary condition (D4) in Theorem 3
can be related to the convergence conditions for simulated annealing presented in Hajek (1988). In particular,
Hajek (1988) shows that simulated annealing converges in probability to a global optimum if and only if
Siera,.. €@ = too, where the temperature parameters #(k) define a nonincreasing cooling schedule (that
approaches zero as k —> +o0), and d* is the maximum depth of all local optima (i.e., the maximum gap in
objective function value between an element of L and the solution in A that can reach an element of G via
local search, where the maximum is taken over all elements of L). This result assumes that the depth of all
elements in G is infinity, hence once a global optimum is reached, simulated annealing cannot escape from it
(with probability one). Since the neighborhood function # is defined such that the solution space is reachable,
then at each macro iteration k that is sufficiently large, there is a positive probability that the algorithm will
need to escape from each element of L and move to an element of G. In particular, at each macro iteration &
sufficiently large, the conditional probability (k) has a component that includes the probability of escaping
from the deepest local optimum. Therefore, using the law of total probability,

r(k) =Zoe1 ¥(k | weL is visited at macro iteration k-1} P{weL is visited at macro iteration k-1}

Therefore, there exists a lower bound for r(k) that is a linear function of P{moving from the deepest element
of L to an element of G} = P{Accepting hill climbing moves out of the deepest element of L to an element of
G} = O(e™"™), since the hill climbing random variable at macro iteration k is exponential with mean 1/ #(k).
Therefore, if Zj=1 5 .. e™""™® = +oo, then condition (D4) in Theorem 3 is satisfied.

Another consequence of Theorem 3 is that different simulated annealing algorithms may not converge in
probability to G, but they may visit G in probability. For example, fixed temperature implementations of
simulated annealing are provably non-convergent (since the temperature parameter does not approach zero),
but visit G in probability (since (k) > £>0 for all k for some & fixed). Cohn and Fielding (1999) and Fielding
(2000) present interesting theoretical and empirical results suggesting that there is an optimal fixed
temperature for simulated annealing for different classes of problems. Orosz and Jacobson (2002a,b) also
present results with fixed temperature simulated annealing algorithms, including analytical expressions for the
expected number of iterations needed to reach a prespecified objective function value. The results in
Theorem 3 are consistent with the observations in Cohn and Fielding (1999) and Fielding (2000). Moreover,
from Lemma 1, the rate at which IT-;, _«[1 — r(j)] converges to zero as k — +oo (or equivalently, the rate at

,,,,,

simulated annealing algorithms.

2. Tabu Guided Generalized Hill Climbing Algorithms

An accomplishment during the term of this grant has been the development of a mathematical framework for
combining tabu search and generalized hill climbing algorithms. Vaughan and Jacobson (2004) formulate
tabu search strategies that guide generalized hill climbing (GHC) algorithms for addressing NP-hard discrete
optimization problems. The resulting framework, termed tabu guided generalized hill climbing (TG*HC)
algorithms, uses a tabu release parameter that probabilistically accepts solutions currently on the tabu list.
TG’HC algorithms are modeled as a set of stationary Markov chains, where the tabu list is fixed for each
outer loop iteration. This framework provides practitioners with guidelines for developing tabu search
strategies to use in conjunction with GHC algorithms that preserve some of the algorithms’ known

11

performance properties. In particular, sufficient conditions are obtained that indicate how to design iterations
of problem-specific tabu search strategies, where the stationary distributions associated with each of these
iterations converge to the distribution with zero weight on all non-optimal solutions.

Tabu search strategies (Glover and Laguna 1997) provide powerful tools for addressing hard discrete
optimization problems. These strategies can be used to effectively guide local search algorithms in search of
optimal/near-optimal solutions by developing and updating a tabu list of forbidden moves of neighboring
solutions. Therefore, tabu search strategies are often described as meta-heuristics that guide local search
algorithms to generate solutions that the local search algorithm, applied independently, would not have
otherwise visited.

The wide variety of both tabu search strategies and local search algorithms make it difficult to
analytically evaluate the performance of such strategies. Consequently, there are a limited number of results
in the literature that rigorously quantify their performance. Aarts and Lenstra (1997) state

“Tabu search is a general scheme that must be tailored to the details of the problem at hand.
Unfortunately, there is little theoretical knowledge that guides the tailoring process, and users have
to resort to the available practical experience.”

Therefore the utility and performance (e.g., convergence properties) of tabu search strategies is typically
studied on a case-by-case basis. Moreover, the decision of when to apply tabu search strategies often relies
on experimentation and explicit knowledge of a particular problem. Consequently, tabu search strategies are
often poorly applied, resulting in blocked access to large sections of a problem’s solution space that may
contain optimal/near optimal solutions.

The generalized hill climbing (GHC) algorithm framework (Jacobson et al. 1998) provides a structure for
modeling local search algorithms to address intractable discrete optimization problems. GHC algorithms are
designed to find optimal solutions for discrete optimization problems by permitting visits to inferior solutions
enroute to optimal/near optimal solutions. The GHC algorithm framework includes several well-known local
search algorithms as special cases. '

Vaughan and Jacobson (2004) formulates tabu search strategies that guide GHC algorithms. The
resulting framework, termed tabu guided generalized hill climbing (TG’HC) algorithms, is neither problem
specific nor GHC algorithm specific. TG?HC algorithms incorporate a tabu release parameter that allows the
algorithm to probabilistically accept solutions currently on the tabu list according to an iteration dependent
function that controls the probability that solutions on the tabu list will be visited. By design, numerous tabu
search strategies can be modeled within the TG’HC algorithm framework.

Vaughan and Jacobson (2004) shows that TG’HC algorithms can be modeled as a set of stationary
Markov chains, where the tabu list is fixed for each outer loop iteration. During each outer loop iteration, a
set of inner loop iterations is performed, where information about the solution space is used to define the tabu
list for the subsequent outer loop iteration. Therefore, each outer loop iteration (with its associated set of
inner loop iterations) can be modeled as a Markov chain, though the set of outer loop iterations cannot be
modeled as a Markov Chain. Moreover, the TG’HC algorithm framework provides practitioners with
guidelines for developing tabu search strategies to use in conjunction with GHC algorithms that preserve
such algorithms’ known performance properties.

Modeling TG*HC algorithms in this way allows the performance of tabu search strategies to be studied
within a general framework. For a TG’HC algorithm, the resulting Markov chain transition matrices can be
written in terms of the transition matrices corresponding to the inner loop iterations of a GHC algorithm
without the tabu search strategy. Therefore, by modeling a TG’HC algorithm as a set of Markov chains,
properties that are known for GHC algorithm can be extended to TG’HC algorithms. Moreover, TG’HC
algorithms provide practitioners with guidelines for developing tabu search strategies to use in conjunction
with a particular GHC algorithm that do not destroy such algorithm’s known performance properties.

As described previously, applying a local search algorithm typically requires the formulation of a
neighborhood function. At each iterations of a local search algorithm, a neighboring solution of the current
solution is generated by a neighborhood probability mass function for the neighborhood function 7, g, ")
= P(w’ € n(;) is generated during iteration k).

Theorem 5 shows that a GHC algorithm applied to a discrete optimization problem can be modeled as a
stationary (discrete-time) Markov chain (Isaacson and Madsen 1985).

Theorem 5: A GHC algorithm applied to a discrete optimization problem with solution space 2 = {w,,
@, ..., 0y} can be modeled by a stochastic process {é’; LE=1,2,. K, n=12,.. Nk), é: € 2 with state
space 2= {w, m,, ..., 0} that satisfies the Markov property for all inner loop iterations » and all states
a1, 0y ..., 0, (i€, {—Q—ﬁ} is a Markov chain). Moreover, for all k= 1,2,...,K, the stationary Markov chain has

corresponding transition matrices P (k), where

12

8 (0,0,)P(R(w,,0,)25;) for all w; e, w,en(w,), j#i
Py(k)= 1- ¥ Pu(k) j=i : (13)

zerz(w,)
z#i

0 otherwise

Proof: Obtained directly from results and observations in Johnson and Jacobson (2002a).

Tabu guided generalized hill climbing algorithms are now described. Vaughan and Jacobson (2004)
shows that each outer loop iteration (which represents a set of inner loop iterations) of a tabu guided
generalized hill climbing algorithm can be modeled by a stationary Markov chain, where the corresponding

transition matrices can be written in terms of the transition matrix £ (k) in (13).

The term tabu search was first introduced and coined by Glover (1977, 1986). Tabu search strategies
(Glover and Laguna 1997) can be used to effectively guide local search algorithms towards optimal/near-
optimal solutions, by developing and updating a tabu list (i.e., a set of forbidden moves). Glover and Laguna
(1997) describe numerous tabu search strategies.

A meta-heuristic (Glover 1986) is a strategy that guides one or several heuristics to visit solutions that the
heuristics would not have otherwise explored. There are no restrictions limiting the type of heuristic that a
meta-heuristic guides. The heuristic is often a local search algorithm (such as simulated annealing). For
example, Faigle and Kern (1992) discuss probabilistic tabu search as a meta-heuristic that guides simulated
annealing. The convergence results in Faigle and Kern (1992) are based on modeling simulated annealing in
terms of Markov processes (Faigle and Schrader 1988). Glover (1989) provides a comparison between
probabilistic tabu search and simulated annealing.

Tabu search strategies can be viewed as manipulations of the neighborhood function for local search
algorithms at a given iteration (based on information obtained during previous iterations), with the objective
of improving performance. Tabu search strategy decisions may be based on either explicit and/or attributive
memory (Glover and Laguna 1997). Explicit memory records entire solutions, whereas attributive memory
keeps track of solution attributes (i.e., a characteristic associated with a particular solution). Since an entire
solution can be described as an attribute, it is sufficient to refer to the elements on a tabu list as solution
attributes. The neighborhood restrictions (or enhancements) imposed by tabu search strategies may facilitate
one or more objectives, such as avoiding cycling through the same set of solutions, escaping local optima, and
exploring particular areas of the solution space (Glover 1977). Note that even when the objective of
implementing a tabu search strategy is clear, what to place in a tabu search strategy memory structure to
accomplish this objective may be difficult to determine. Therefore, candidate list strategies are used to define
the tabu list and how it is updated.

Glover and Laguna (1997) discuss the four tabu search dimensions: influence, quality, recency, and
frequency. These may be thought of as incentive dimensions for tabu search strategy memory structures. A
memory structure from the influence dimension evaluates the effect of choices made during the search. When
the quality of a solution attribute is considered in decision-making, a quality memory structure is being
applied. Quality can be used to catalog solution attributes that are shared by good/reasonable solutions.
Recency memory structures are based on the solution attributes of recently visited solutions. Frequency
memory structures are used to make decisions based on frequencies associated with solution attributes. Note
that these four memory structures are not mutually exclusive and can be employed simultaneously.
Moreover, each solution attribute on a tabu list is assigned a tabu tenure (i.e., the number of iterations that a -
solution attribute remains on the tabu list). It is not necessary that every solution attribute on the tabu list
have the same tabu tenure. Moreover, tabu tenure can be either finite or infinite.

Vaughan and Jacobson (2004) describes a framework for modeling tabu search strategies that guide GHC
algorithms for addressing discrete optimization problems. The resulting framework, termed tabu guided
generalized hill climbing (TG*HC) algorithms, places no restrictions on the design of the tabu list, hence it
can include numerous tabu search strategies guiding GHC algorithms.

Tabu search strategies are designed to partition the solution space. To describe how this is done, consider
a fixed iteration of a TG*HC algorithm. The TG*HC algorithm framework builds a tabu list 7 based on any of
the four tabu search dimensions or a combination thereof. TG*HC algorithms are designed such that T does
not change (i.e., is fixed) during all the inner loop iterations associated with an outer loop iteration.
Therefore, T is only updated at the end of the outer loop iterations based on the set of solutions visited during
the inner loop iterations. Note that tabu strategies that update T at every iteration can be modeled in the
TG’HC algorithm framework by executing only a single inner loop iteration. However, the Markovian
property of the inner loop iterations (for each fixed outer loop iteration) would no longer be satisfied, since
this property is only satisfied when the number of inner loop iterations is large. Nonetheless, the structure of
the TG*HC algorithm framework can still be used, since it provides a general framework for how to imbed

eSS

13

tabu search strategies within GHC algorithms.

The key difference between TG*HC and GHC algorithms is the incorporation of T and a tabu release
parameter, &k, () w), where 0 < &k o) w) < 1 (see Section 4.4). In fact, comparing GHC algorithm
pseudo-code with TG’HC algorithm pseudo-code given below, the only difference is that in each inner loop
jteration of the TG*HC algorithm, if the neighboring solution generated is on 7 and rejected based on the tabu
release parameter value, then this solution is not given the opportunity to be accepted as the new current
solution.

TG?HC Algorithm
Set the outer loop counter bound X and the inner loop counter bounds N(k), k= 1,2,...,K
Define a set of hill climbing random variables -0 < R, < o0, k=1,2,...,K
Set the iteration indices i =0, k=n=1
Generate an initial solution @(0) € and initialize the tabu list T’
Repeat while £ < K
Repeat while n < N(k)
Generate a solution @ € n(a(i)) using neighborhood probability mass function gy(axi),)
If » € T, then generate u = U(0,1). Ifu> &k w() w), goto*
Generate an observation R from Ry aXi), o)
Compute & aXi), w) = fw) —f (i)
If R > & (i), w), set a(i+1) < w; Else (i.e., R < §aXi),), set axi+1) « ax(i)
* nentlieitl
Until n= N(k)
Update the tabu list, T
n=1, k<« kt+l
Until k=K

TG*HC algorithms incorporate a tabu release parameter, @k, (i) @), that allows solutions on T to be
accepted according to an iteration dependent function. Therefore, the tabu release parameter controls the
probability that solutions on the tabu list are visited. Candidate solutions with solution attributes on the tabu
list are released from their tabu status at outer loop iteration k& with probability 0 < &k, w@)w) < 1. Since
TG’HC algorithms place no restrictions on how 7 is updated, any tabu search strategy can be modeled within
the TG*HC algorithm framework by setting the parameter &k, w(i) @) = 0 for every o(i) € 2, w € n(w()),
and forall k=1,2,....

The tabu release parameter can also be used to define a new type of probabilistic tabu search strategy that
is distinct from probabilistic tabu search (Glover 1989, Glover and Laguna 1997). This new probabilistic tabu
search strategy can be defined by setting &k, w(i)) = gi(aXi),»’). Therefore, if a tabu neighboring solution
o’ € n(w@)) N T is generated, then o’is accepted with probability &k, w() w) PR (i), @) > & (i), @))
(see Section 4.5). Glover (1989) discusses a nonsequential approach to determining the transition
probabilities, where each element w’ e n(w(i))is assigned a weight w(w)) that is determined using tabu search
strategies. For this case,

gi(o(i),@") = P(Generating @’ € n(w@)=w(w)! ¥ wlw) .

wenfef))
Define probabilistically decreasing tabu search as a meta-heuristic for GHC algorithms, where for all o) o
€ 2and for all k = 1,2,..., 0 < Pk wf)w < 1, where &k w()w is monotonically increasing and
1{1_’31 Dk, w@)w) = 1. Theorem 6 below shows that a Markov chain model can be formulated only for the

inner loop iterations of T’GHC algorithms (not for the outer loop iterations).

Theorem 6 (Vaughan and Jacobson 2004): For each outer loop iteration, the inner loop iterations of a TG*HC
algorithm applied to a discrete optimization problem with solution space 2 = {w;, @, ..., mg} can be

modeled by a stochastic process {Q,’,‘ Le=1,2,...,.K,n=1,2, ..., Nk), Q,’,‘ e 2 with state space 2= {w,

@, ..., @0} that satisfies the Markov property for every » and all states @), @, ..., @, (i.e., { Q: } is a Markov
chain). Moreover, the stationary Markov chain has corresponding transition matrices

[Py for all w, €2, w, en(w,)NT*j#i
Pk, w,,w,;)Py (k) for all w,€Q, w; en(w)NTj#i
1- % Bk j=i (14)

zenfe,)
z#i

| 0 otherwise

where P (k) is the transition matrix that corresponds to the Markov chain that models the underlying GHC
algorithm for the TG*HC algorithm.

The TG*HC algorithm Markov chain model allows the performance of tabu search strategies to be studied
within a general framework. Moreover, insights into how to implement tabu search strategies can be obtained
from this framework. For example, modeling TG*HC algorithms as Markov chains allows properties that are
known for particular GHC algorithms to be extended to TG*HC algorithms. Moreover, the TG*HC algorithm
framework provides guidelines for developing tabu search strategies to use in conjunction with a GHC
algorithm that do not affect the algorithm’s known performance properties.

Theorem 8 provides conditions under which a TG*HC algorithm will not affect the performance
properties of the underlying GHC algorithm. In particular, given a GHC algorithm with neighborhood
probability mass function g, and transition matrices P (k), Theorem 8 provides sufficient conditions for a
unique stationary distribution to exist at each outer loop iteration &, and conditions that guarantee that the
limit of these stationary distributions contains zeros for all non-optimal solutions (Johnson and Jacobson
2002a). The following result (from Johnson and Jacobson 2002a) is needed to prove Theorem 8.

Theorem 7: (Johnson and Jacobson 2002a): Consider a GHC algorithm applied to an instance of a discrete
optimization problem (£2, f) with neighborhood function 7. Define the GHC neighborhood probability mass

function by g, and the hill climbing random variables by {R,}, resulting in transition probabilities F,j(k).
Assume that g, and P i(k) satisfy:
(a) For all w, @ € Qand all outer loop iterations , there exists a positive integer 4 and a corresponding
sequence of solutions Iy, /,,...,I; € £ with [,= @, ls= @}, and g i (k)>0,m=0,1,...d-1,

b) forall w,w € 2, & € n(w,), and all outer loop iterations k, lim g, exists and is strictly positive.
g g 77 p k—)oog

Moreover, assume that the acceptance probabilities satisfy
(¢) P(Ry= 0)> 0 forall w e £2 o € n(w), and all outer loop iterations %,
(d) flw) <flw) = lim P(R,26)=0.
Then the stationary distribution n(k) exists for each outer loop iteration &. Moreover, £im n{k) = 0 for all &

€ (2 that are neither local or global optima, provided that the limit exists.

Conditions (a) and (b) are, by design, straightforward to satisfy. For example, if the neighborhood
probability mass function is not a function of the outer loop iteration £, and if for all @, @ € 2, g aXi),aX))) is
strictly positive, then conditions (a) and (b) hold. Condition (c) requires that for all @; € 2, the probability of
accepting every neighboring solution @ € 77(w), for all iterations £, is strictly positive. Lastly, condition (d)
implies that as the outer loop iterations approach infinity, the probability of accepting neighbors of higher
objective function value approaches zero.

Note that the proof of Theorem 7 in Johnson and Jacobson (2002a) depends only on the inner loop

iterations (associated with an outer loop iteration) satisfying the Markov property. Theorem 8 shows that if a
GHC algorithm satisfies certain conditions, then a probabilistically decreasing tabu search strategy can be
defined that guides the GHC algorithm, and performance results can be obtained for the resulting TG*HC
algorithm.
Theorem 8 (Vaughan and Jacobson 2004): Consider a GHC algorithm applied to an instance of a discrete
optimization problem (£2 f) with neighborhood function 7. Define the GHC neighborhood probability mass
function by g; and the hill climbing random variables by {Ry}, resulting in transition probabilities P (k).
Assume that P (k) satisfy (a)-(d) in Theorem 3. Consider a probabilistically decreasing TG*HC algorithm
applied to an instance of (£2 f), where the same neighborhood probability mass function g, and hill climbing
random variables {R;} are considered. Define the resulting transition matrix by P(k). Then n(k) exists for
each k. Moreover, if fﬁ’i n(k) exists, then /{Ti n(k) = 0 for all @; € £2 that are neither local or global optima.

Since the TG’HC algorithm framework allows different tabu search strategies to be incorporated into GHC

15

algorithms (e.g., simulated annealing), Theorem 8 provides guidelines for developing tabu search strategies to
use in conjunction with such algorithms that preserve their performance properties. For example, probabilistic
tabu search (Faigle and Kern 1992) incorporates memory into simulated annealing "to enhance its
performance. TG’HC is designed in a similar manner by incorporating memory into GHC algorithms.
Moreover, Theorem 8 provides sufficient conditions that define how iterations of problem-specific tabu
search strategies should be designed such that the stationary distributions of these iterations converge to the
distribution with total weight zero on the non-optimal solutions. For example, any tabu release parameter that
satisfies the conditions that 0 < &k, w, @) < 1 is monotonically increasing and ;{Ti Ak, w,y) = 1 are

sufficient for Theorem 8 to hold, hence the performance of the GHC algorithm is preserved. Therefore,
Dk, w,) =1 - (1/k) for all o € 2 w; € n(w) N T satisfies these conditions, while &k w, @) = V2 for all o,
€ 0 o € n(w) N T does not.

The TG’HC framework includes both tabu search and GHC algorithms as special cases. In particular,
when &k,) = 0 for all w; € 2 o € n(w) N T, then the resulting TG’HC algorithm reduces to tabu
search with tabu list 7, while when @k w, @) = 1 for all @, € 2 @ € nfw) N T, the resulting TG*HC

_ algorithm reduces to GHC. This suggests that the tabu release parameters acts as a weight that determines the

fraction of tabu search and the fraction of GHC that is being using during a TG*HC algorithm execution,
analogous to taking a convex combination of two algorithms, where ’{im Ak, w;,) = 1 translates into a
—x

growing amount of weight being shifted from tabu search to the GHC algorithm as the TG*HC algorithm
executes. Therefore, the TG*HC algorithm framework provides a natural generalization of probabilistic tabu
search by moving beyond the acceptance criteria incorporated in simulated annealing and by allowing for the
tabu list to be overridden probabilistically, with the requirement that the tabu status of solutions on the tabu
list be weakened as the algorithm executes.

The sufficient conditions in Theorem 8 are an extension of results in the literature for local search
algorithms (Johnson and Jacobson 2002a) to TG*HC algorithms, by showing how a Markov chain model can
be used to describe the long run behavior of such algorithms. Moreover, these conditions show how
properties that are known for local search algorithms can be extended to TG*HC algorithms. By modeling
TG’HC algorithms as Markov chains, the performance of tabu search strategies can be studied within a
general framework. These results also show how TG’HC algorithms generalize results for GHC algorithms
(Johnson and Jacobson 2002a).

3. Simultaneous Generalized Hill Climbing Algorithms
An accomplishment during the term of this grant has been the completion of the study and investigation of
simultaneous generalized hill climbing algorithms. These results have been reported in Vaughan et al. (2005,
2007), and applied to a combat search-and-rescue operation problem reported in Jacobson et al. (2006b).
Simultaneous generalized hill-climbing (SGHC) algorithms were introduced as a general framework for
simultaneously addressing a set of related discrete optimization problems using heuristics. It is common to
encounter several discrete optimization problems where a relationship exists between the solution spaces of
the individual problems. In general, these problems are addressed individually. Because of their similarities,
the same computational tools can be effectively used to address them. Therefore, the traditional approach has
been to address each discrete optimization problem individually using the same heuristic. For example, in the
late 1990’s, the Material Process Design Branch of the U.S. Air Force Research Laboratory, Wright Patterson
Air Force Base (Dayton, Ohio) had several similar discrete optimization problems under study. Each discrete
optimization problem was a manufacturing-process design optimization problem (design sequence). The
large number of design sequences and associated input-parameter-setting combinations made this set of
problems difficult to solve. Several heuristics in the generalized hill-climbing algorithm (GHC) framework
were introduced to address such manufacturing design problems (Jacobson et al. 1998) individually. The
SGHC algorithm framework was motivated by the results reported in Vaughan et al. (2000), which developed
a new neighborhood function that allows a heuristic to identify a near-optimal discrete manufacturing design
sequence among a set of valid design sequences. This neighborhood function allows heuristics
simultaneously to optimize over both the design sequences and the input parameters, eliminating the need to
address each design sequence (i.e., each discrete optimization problem) individually. Therefore, all the design
sequences were addressed in a single algorithm execution. Moreover, during the algorithm’s execution, the
new neighborhood function allowed information gained while optimizing over the current design sequence to
be used to define the initial input parameters (solution) for the subsequent design sequence. This was
accomplished by considering common processes across these two design sequences and retaining the optimal
parameter values over the current design sequence to generate the initial solution in the subsequent design
sequence. The computational results in Vaughan et al. (2000) suggest that such an approach is not only
feasible but yields results that are superior to the previous approach of addressing each design sequence
individually. The limitation of this approach is that the neighborhood function is problem specific.

16

This research completes the research analysis initially reported in Vaughan et al. (2000) by formally
defining a class of sets of related discrete optimization problems, similar to the one described for the
manufacturing design problem. A set of discrete optimization problems contained in this class is defined as a
set of fundamentally related discrete optimization problems. Informally, a set of discrete optimization
problems are fundamentally related if they share a common objective function and have some well-defined
overlap.

The SGHC algorithm framework is used to simultaneously to address sets of fundamentally related
discrete optimization problems using heuristics. A metric (i.e., distance measure) between elements in a set
of fundamentally related discrete optimization problems is introduced. This metric is a measure of the
overlap between two discrete optimization problems. SGHC algorithms probabilistically move between
elements in a set of fundamentally related discrete optimization problems during their execution according to
a problem probability mass function that depends on both the iteration counter and the metric. Therefore, an
SGHC algorithm can be defined such that movement between discrete optimization problems that are
significantly similar occurs more frequently than movement between discrete optimization problems that are
less similar (hence benefit less from an exchange of information). When an SGHC algorithm moves between
discrete optimization problems, information gained while optimizing over the current discrete optimization
problem is used to set the initial solution in the subsequent discrete optimization problem. The information
used is determined by the practitioner, for the particular set of problems under study. However, effective
strategies are often apparent based on the problem description.

The SGHC framework is developed such that it can be applied to a wide variety of sets of related
manufacturing, military, and service-industry discrete optimization problems. For example, the algorithm
introduced in Vaughan et al. (2000) can be described as a SGHC algorithm for addressing a set of discrete-
manufacturing process-design optimization problems. Three additional examples of sets of fundamentally
related discrete optimization problems are described in Vaughan et al. (2005): a set of traveling-salesman
problems (TSPs), a set of permutation flow-shop problems, and a set of Max-Satisfiability problems. These
illustrative examples suggest how other sets of discrete optimization problems can be modeled such that the
SGHC algorithm can be easily implemented.

Vaughan et al. (2005) present new computational results using the SGHC algorithm to address randomly
generated problems of the illustrative examples. For each set of discrete optimization problems, a heuristic is
embedded in the SGHC algorithm framework (either simulated annealing or local search). For comparison
purposes, the same heuristics are also applied individually to each discrete optimization problem in the sets.
The computational results suggest that SGHC algorithms outperform the heuristics applied individually to the
discrete optimization problems in the set, as measured by the average optimal solution across 30 independent
replications. Jacobson et al. (2006b) report computational results using SGHC algorithms to address a
specific instance of a set of TSPs. Moreover, Vaughan et al. (2000) illustrate the advantages of approaching
a set of discrete-manufacturing process-design optimization problems using SGHC algorithms.

To describe the SGHC algorithm framework, several definitions are needed. Define a discrete
optimization problem by a finite set of solutions, 2= {®;, @, ..., @}, together with an objective function f:
£ — % Without loss of generality, assume that all discrete optimization problems are minimization
problems. To address NP-hard discrete optimization problems, heuristics are formulated with the goal of
identifying near-optimal solutions. To apply a heuristic to such problems, define a neighborhood function, n:
02— 22 where n(w) c 2for all @ € £2. Note that the neighborhood function maps each solution @ € Q2to a
set of solutions 7(w) c £2and that this set is contained in the power set of £2(i.e., 7(w) € 2. Define gy(i) to
be the solution probability mass function for the neighborhood function 7, namely, the probability that @, €
n(@,) is generated during iteration i.

It is often necessary, in practice, to approach sets of similar discrete optimization problems Limited
progress has been made in designing a framework for exploiting the similarities between such sets of
problems. For example, Zhang and Dietterich (1997) introduce a methodology for solving discrete
optimization problems through the application of reinforcement learning, where information obtained while
solving one discrete optimization problem can be used to determine reasonable parameters for solving other
similar problems.

The GHC algorithm framework (Jacobson et al. 1998) provides a structure for using heuristics to address
intractable discrete optimization problems. The GHC algorithm framework includes numerous heuristics that
seek to find optimal solutions for discrete optimization problems by allowing the algorithm to visit inferior
solutions en route to an optimal or near optimal solution. All GHC algorithms are formulated using three
components, a set of hill-climbing random variables {R;}, a neighborhood function 7, and a solution
probability mass function g. This structure permits exploration into the behavior of families of GHC
algorithms. GHC algorithms also have two iteration counters, an outer loop counter (k) and an inner-loop
counter (n). The upper bounds for these counters, K and N(k), respectively, define the algorithm’s stopping

17

criteria. When the stopping criterion of an inner loop is met (i.e., n» = N(k)), then all inner-loop parameters
can change (i.e., R, and N(k)). When the stopping criteria of the outer loop are met (i.e., k¥ = K), the algorithm
terminates. The GHC algorithm is presented in pseudo-code form using inner and outer loops (in contrast to
the single loop form described in Section 1):

GHC Algorithm
Inputs:
Set the outer loop counter bound X and the the inner loop counter bounds N(k), £=1,2,...,.K
Define a set of hill-climbing random variables -0 £ Ry < 400, k=1,2,....K
Set the iteration indices i =0, k=n=1
Generate an initial solution aX0) € (2 and set o*« a(0)
Repeat while £ < K
Repeat while n < N(k)
Generate a solution @ € 7(e(j)) using solution probability mass function g
Generate an observation R from Ry(aXi), w)
Compute §aXi), w) = fw) - fa(i))
If R > & (i), w), set a(i+1) «- @ ; Else (i.e., R < & aXi), w)), set o(i+1) « (i)
If afi+1)) < @™, set o* ¢ aXi+1)
nentliei+1
Until n= N(k)
nelLkek+1
Until k=X
Output: Report o* ,

Numerous common heuristics can be defined using the GHC algorithm framework (see Jacobson et al.
1998). Pure local search accepts only neighbors of improving (lower) objective-function value. Pure local
search can be formulated as a GHC algorithm by setting Ri{aXi), @) = 0, for all (i), w € m(e(i)), k=1,2, ...,
K. Simulated annealing (Henderson et al. 2003) accepts neighbors of higher objective-function values with
decreasing probability, where P{Ry(ai), ®) = & (i), ®)} = XD for all a(i) € Q, o € n(aXi)), and k=1,
2, ..., K, for some simulated-annealing temperature parameter £, > 0, where lim 4. #% = 0. Simulated
annealing can be formulated as a GHC algorithm by setting Ry aXi), w) = -t In(U), for all i) € Q, w0 €
(@), and k=1, 2, ..., K, where U = U[0, 1]. Threshold accepting (Dueck and Scheuer 1990) accepts
neighbors with higher objective-function values according to a sequence of deterministic (constant)
thresholds, Oy, k=1, 2, ..., K. Threshold accepting can be formulated as a GHC algorithm by setting Ry (i),
) = QO for all (i) € 2 o € n(aXi)),and k=1, 2, ..., K. Tabu search (Glover and Laguna 1997) can also
be formulated within the GHC framework (see Vaughan and Jacobson 2004). Convergence and performance
results for GHC algorithms are presented in Johnson and Jacobson (2002ab), Sullivan and Jacobson (2001),
and Jacobson and Yiicesan (2004a,b).

To formally define a set of fundamentally related discrete optimization problems, a metric between
elements in a set of fundamentally related discrete optimization problems is introduced to define a distance
measure between the discrete optimization problems in the fundamentally related set. This metric aids in
designing the problem probability mass function (that governs movement between discrete optimization
problems). For example, it is generally desirable to define the SGHC algorithm such that movement between
discrete optimization problems with significant similarity occurs more frequently than does movement
between discrete optimization problems that are less similar (hence benefit less from an exchange of
information). Finally, the SGHC algorithm framework is introduced simultaneously to approach sets of
fundamentally related discrete optimization problems using heuristics.

Several definitions are needed to discuss the class of sets of discrete optimization problems on which
SGHC algorithms can be applied. Consider a set of discrete optimization problems S = {D,, D;, ..., Du};
problem D, = (£, f,) is defined by a finite set of solutions (2, and a real-valued objective function f,: £3,— 7.
A set of discrete optimization problems S is fundamentally related by a set of objects, Ob = {cj, ¢, ..., ¢,}, if
the solution space £3, of each problem D, € S can be uniquely defined by C,, a subset of Ob termed the
Jundamental relation set of D, (i.e., for every problem D,, there is exactly one set C, ¢ Ob such that C,
completely defines £3)). For example, in the manufacturing-design problem, the set of objects Ob is the set of
all possible manufacturing processes, while for a set of TSPs, the set of objects is the set of all the cities, for a
set of Max 3-Satisfiability problems, the set of objects is the set of all the clauses, and for a set of permutation
flow-shop problems, the set of objects is the set of all the machines.

Every set of fundamentally related discrete optimization problems can be defined by a set of binary
vectors that allow a metric between discrete-optimization problems to be defined. To see this, consider D, €
S where C, Ob is the fundamental relation set of D,. Then C, can be represented by the binary activity

s

18
vector ¢¥ €{0,1}, ¢'=(¢}, ¢}, ..., ¢!), where
1 ifc; is contained in C,
¢l = .
0 otherwise

For the manufacturing-design problem, ¢! ={1, 0, 1,0, 1, 0, 1}, ¢!={1,0, 1, 0,0, 1, 1}, ¢*={1,0, 1, 1, 1,0, 1},
¢*={1,1,1,0,1,0,1},and ¢*={1,1,0,1,1,0, 1}.

For two discrete-optimization problems, D,, D, € S, if |[Cx n C)| / |C; U C)] is close to one, then the
optimal/near-optimal solutions of D, and D, may be similar. The following detachment metric is defined to
measure if two discrete optimization problems (in a set of fundamentally related discrete optimization
problems) are close together. Define the detachment metric p between discrete optimization problems D, D,
€S,

x y
cn _cll

ADx, D))= |c;‘ -c] ' +

X _ oY
c2—c2|+...+

(see Royden 1988). The detachment metric quantifies overlap between problems in S.

SGHC algorithms seek an optimal solution from among a set of fundamentally related discrete-
optimization problems by allowing the algorithm to move probabilistically between such problems. When a
new problem is generated, an initial solution for this new problem is then generated using information from
the previous problem’s best-to-date solution. An inner and outer loop structure is used in SGHC algorithms,
where SGHC algorithms restrict possible movement between problems to the first iteration of the outer-loop
iterations. This restriction ensures that the embedded GHC algorithm (i.e., the underlying heuristic) is applied
to each problem at least N(k) iterations each time it is generated (i.e., initially visited). An SGHC algorithm
moves between problems according to a problem probability mass function hy(k, p(Dx, D,)), where for all k =

1,2, ...,K, 0 <hy(k, o(D:, D))) <1 forall D, e S, D, € 1,(Dx), and ¥ hy(k, A(Dx, D)) =1 forall D, e
Dyen,, (D))

S, Dy € nse(Dy), where n.(Dy) < S is the set of neighborhood problems for D,. The two-tuple (k, ») denotes
inner-loop iteration n = 1,2,..., N(k); during outer loop iteration k£ = 1, 2, ..., K. D(k) is the discrete
optimization problem over which the SGHC algorithm is executed during the & outer-loop iteration, where
£Xk) is the solution space of D(k). During the inner-loop iterations, the SGHC algorithm is executing over the
solution space of the current problem using the embedded GHC algorithm. When the SGHC algorithm
terminates, based on the number of inner- and outer-loop iterations executed, the |S| = m best to-date solutions
w*(D), D € S, are reported. The SGHC algorithm is presented in pseudo-code form:

SGHC Algorithm
Inputs:
Set the outer loop counter bound K and set the inner loop counter bounds M%), k=1,2, ..., K
Define a set of hill-climbing random variables -co < Ry <400, k=1,2, ..., K
Select an initial discrete optimization problem D(0) € S and generate an initial solution &(0)e £X0)
Set the iteration indices N(1)=i=0,k=n=1and set (D)=0 for all De S
Set o*(D(0)) « a(0), D*«-D(0) and /(D(0)) = 1.
Repeat while k< K
Generate D(k) € n.(D(k-1)) using the problem probability mass function 4
If D(k) # D(k-1), generate @ € (Xk) and set axi) « o.
If I(D(k)) # 1, set w*(D(k)) ¢« w and K(D(k)) = 1
If D(k) = D(k-1), set a(i) « a(i-1)
Repeat while n < Mk)
Generate a solution @ € 7(axi)) < (Xk) using solution probability mass function g
Compute & axi),w) = fpw(@) - foa(eXi)) and generate an observation R from Ry aXi),)
If R > & aXi),w), then a(i+1) « w; if R < & aXi),w), then o(i+1) < a(i)
I o @X+1)) < fou @*(D(KY), set @*(D(K)) ¢~ a(i+1)
nentliei+l
Until n = N(k)
nelLkek+1
Untilk=XK
Output: Report o*(D) forallD e S
To illustrate further the scope of the SGHC algorithm framework, three illustrative examples of sets of
fundamentally related discrete optimization problems are presented: a set of TSPs, a set of Max 3-
Satisfiability problems, and a set of permutation flow-shop problems. -
The TSP is a well-known NP-hard discrete optimization problem that is useful for modeling a wide
variety of real-world problems (Lawler et al. 1985). For example, traditional applications of the TSP include

19

various types of vehicle routing and scheduling problems. More recently, applications of the TSP have been
expanded to include applications like printing circuit boards, x-ray crystallography, overhauling gas turbine
engines, and controlling industrial robots (Johnson and Jacobson 2002ab). Informally, the TSP states that,
given a set of g cities, we are to find a route that visits all g cities exactly once, returns to the initial city (we
have a Hamiltonian cycle), and minimizes the total distance traveled. The TSP is formally stated as follows.
Traveling Salesman Problem:

Instance: Given a set of r cities C = {c}, ¢,, ..., ¢,} and a distance matrix P that represents the cost of traveling

between the cities in the set C.
Question: Find a Hamiltonian cycle 2 = (c(), ¢, ..., ¢)) (i-€., a permutation of (c;, ¢, ..., ¢;)) such that) =

r-1 L.
Y Pcg, cgen) + Pl ¢my) is minimized.
J=

A set of TSPs is defined as follows. Given a set of r cities Ob = {c,, ¢a, ..., ¢,}, consider m TSPs, § =
{D,, Dy, ..., Dy}, where each problem D; is defined by a set of cities C; such that forall i =1, 2,..., 7, ifc;e C;
then ¢; € Ob (see Figure 1 with » =11 and m = 3). The objective is to find the minimal-distance Hamiltonian
cycle for each of the m sets of cities.

The set of TSPs is formally stated as follows.

Set of Traveling Salesman Problems:
Instance: Given a set of 7 cities Ob = {c,, ¢, ..., ¢,}, a set of m subsets of Ob, O = {C}, C,, ..., C»}, and a
distance matrix P that represents the cost of traveling between the cities in the set Ob.

Question: Find the m Hamiltonian cycles 4; = (cay, ¢, -\ €, 2.7 =12,...,m, where cye C;foralli=1,

2, ... |Cj|, such thatﬁ(hj) = Ey=l,2 ,,,, ICi-1 P(C(y), C(y+1)) + P(c(|C-| ¥ C(l)),j =1, 2, ..., m are minimized.

Figure 1: Example of Ob withr=11and m =3

Jacobson et al. (2006b) use a set of fundamentally TSPs to model a combat search-and-rescue operation
problem for determining which fleet platforms can best search a given area. This resulted in a set of six TSPs.
Computational results presented in Jacobson et al. (2006b) demonstrate that near-optimal solutions can be
reached more effectively and efficiently using a SGHC algorithm than approaching the problems individually
using a GHC algorithm.

Satisfiability was the first problem proven to be NP-complete (Cook 1971). Satisfiability has numerous
real-world applications (Gu 1997). For example, the machine-shop scheduling problem consists of a number
of operations to be scheduled subject to a collection of constraints, where each operation requires a specified
processing time. Smith and Cheng (1993) model this problem with Satisfiability by categorizing the
constraints as sequencing restrictions (i.e., an operation must finish before another operation starts), resource
capacity constraints (i.e., two operations require the same source, hence cannot be scheduled concurrently),
ready times (i.e., the earliest time at which an operation can start), and deadlines (i.e., the latest time at which
an operation must be completed). The machine-shop scheduling problem then asks if all operations can be
completed on time, without violating any of the constraints.

To describe Satisfiability, several definitions are needed. A clause is a combination of literals, where a
literal is a Boolean variable (X;= 1) or its negation (X; = 0). The solution space 2= {0, 1}? is the set of all
possible solutions (i.e., |[¢) = 29), where ¢ is the number of Boolean variables. A solution, ® € (2 is a
Boolean vector of size g. Given a solution @ e (2 a clause is satisfied if at least one of its literals takes on the
value one.

An instance of Satisfiability consists of a set of y clauses. If there exists (does not exist) an @ € 2 such

20

that all the clauses are satisfied, then the answer to this instance of Satisfiability is yes (no) and this instance is
said to be satisfiable (unsatisfiable). Several variations of Satisfiability have been studied, based on the
number of literals assigned to each clause. For example, if the number of literals is two or three for all
clauses, then Satisfiability is referred to as 2-Satisfiability or 3-Satisfiability, respectively. Unless otherwise
noted, assume that all clauses contain three literals.

Any 3-Satisfiability problem can be formulated as an optimization problem (termed Max 3-Satisfiability)
by introducing the objective function f = %=1, , P{w), where the goal is to maximize f over the solution
space (2, where
1 if clausej is satisfied for solution co}

P(w)=
(@) {0 otherwise
3-Satisfiability (Max 3-Satisfiability) is formally defined as follows.

3-Satisfiability (Max 3-Satisfiability):

Instance: Given a collection of y clauses defined by g literals, where each clause contains three literals.
Question: Find a solution @ (i.e., a set of values for the g Boolean variables) such that f=Z-;, _, P(@)/yis
equal to one (maximized).

A set of 3-Satisfiability (Max 3-Satisfiability) problems is defined as follows. Given a set of » clauses Ob
= {c;, ¢3 ..., ¢,} and q literals, consider m 3-Satisfiability (Max 3-Satisfiability) problems S = {D;, D,, ...,
D,,}, where each D; is defined by a set of clauses C;, and for each ¢; € Cj, c; € Ob. For each of these m
problems, find a set of values for the ¢ Boolean variables such that £; (the objective function for D;) is equal to
one (maximized).

Set of 3-Satisfiability (Max 3-Satisfiability) Problems:

Instance: Given a set of r satisfiability clauses Ob = {c,, ¢;, ..., ¢;} and a set of m subsets of Ob, O = {C,, C;,
..., Cu}, where each clause contains three literals..

Question: Foreach C;,i=1,2, ..., m, find a solution o, (i.e., a set of values for the ¢ Boolean variables)
such that fi= (Zj=12, ;o1 P(@))/|Cl, is equal to one (maximized).

An example of when such a set of discrete optimization problems may occur is for a machine-shop
scheduling problem that considers similar, yet different, sets of constraints. In particular, consider a machine-
shop scheduling problem defined by a given set of constraints. A second (fundamentally related) machine-
shop scheduling problem may be under consideration defined by the same set of constraints slightly perturbed
(e.g., optional deadlines, deadlines that fluctuate according to the day of the week, amd processing times that
vary).

Scheduling problems have a broad spectrum of application domains (e.g., manufacturing, computers, and
health care). A set of permutation flow-shop problems is used to further illustrate the concept of a
fundamentally related set of discrete optimization problems. Informally, given a set of g jobs to be processed
on r machines (in the order 1, 2, ..., r), the permutation flow-shop problem seeks to find a sequence of jobs
that minimize the maximum completion time Cp.x, where preemption is not permitted (Aarts and Lenstra
1997). For three or more machines, the permutation flow-shop problem is NP-hard. The permutation flow-
shop problem is formally stated as follows.

Permutation Flow-Shop Problem:

Instance: Given a set of » machines C={c,, ..., ¢;}, a set of g jobs J={j,,..., j,} to be processed on the r
machines (in the order 1,2,..., 7), and a matrix P (where p;; denotes the processing time of job / on machine j).
Question: Find a sequence of jobs such that C,.,, the maximum completion time, is minimized.

A set of permutation flow-shop problems is defined as follows. Given a set of » machines Ob = {c,, c;,
..., ¢+}, consider m permutation flow-shop problems S = {D,, D,, ..., D,;}, where each D; is defined by a set of
machines C; such that forall i = 1, 2,..., r, if ¢; € C; then ¢; € Ob (see Figure 2 with » = 10 and m = 4). The
same g jobs are to be considered for each set C;. For each of these m problems, the objective is to find a
sequence of jobs that minimizes the maximum completion time C,,. The set of permutation flow-shop
problems is formally stated as follows.

Set of Permutation Flow-Shop Problems:

Instance: Given a set of » machines Ob ={c,, ¢;, ..., ¢,}, a set of m subsets of Ob, O ={C,, C,, ..., C,}, where
for each C, € O, w = 1, 2, ..., m, the set of g jobs J ={j;, js ..., j,} is to be processed on |C,| machines (in
ascending order) and a matrix P (where p;;;; denotes the processing time of job i/ on machine ;2).

Question: Find a sequence of jobs for each set of machines C,, w =1, 2, ..., m, such that C,,,, the maximum
completion time, is minimized.

Figure 2: Set of Permutation Flow-Shop Problems, with » =10 and m =4

(01) = EHEHEHEHEHe R
@) - Rl
©) = BHaHEHHEHR— o
©) - BHa—fHaH
@) - B

The previous discussion also suggests how to model many variations of the classical job-shop scheduling
problem (Aarts and Lenstra 1997). The classical job-shop scheduling problem is very similar to the
permutation flow-shop problem without the restriction that the machines are visited in a predetermined order.
The job-shop scheduling problem approximates a manufacturing process. However, in a situation in which
there is only one of each type of machine, certain machines may become bottlenecks or perhaps fail.
Therefore, in practice, machines requiring high availability or disproportionately large processing times are
very likely replicated (Barnes and Chambers 1995). The flexible job-shop problem (FJSP) is an extension of
the classical job-shop scheduling problem. In the FISP, any one machine from a given set of machines can
process an operation, where the problem is to assign each operation to a machine and to order the operations
on the machines such that the maximal completion time of all operations is minimized.

Sets of fundamentally related job-shop scheduling problems occur when several manufacturing-process
options are being considered. For example, consider a set of processes to develop an airplane part. To
enhance the part, inserting an additional inspection process or a process that adds or adjust seals may be under
consideration. Similarly, to reduce costs, eliminating an existing process may be desirable. Moreover, sets of
fundamentally related flexible job-shop problems occur in practice, such as when bottlenecks are found, they
can often be eliminated by adding one or more machines to some of the sets of machines. Exploring the
options of machine additions (and which machine to purchase: “should we buy a new machine 4 or machine
B?”) generates a set of fundamentally related discrete-optimization problems.

Note that when the SGHC algorithm moves between discrete-optimization problems, information gained
while optimizing over the current discrete-optimization problem D; is used to obtain the initial solution in the
subsequent discrete-optimization problem D;. For the set of TSPs addressed in Jacobson et al. (2006b) and
Vaughan et al. (2005), this is accomplished by first recording the best solution to date found while optimizing
over D;. Then, for every pair of cities contained in this solution, if this pair is a feasible city pair for D), then it
is incorporated into the initial solution for D;. Note that not every edge in this solution for D; is likely to be
incorporated into the initial solution for D,, However, once all possible edges are passed, the remaining edges
can then be randomly generated. Note that an alternate approach to complete the initial solution for D; would
be to generate the remaining edges by applying a greedy algorithm. Lastly, for both the set of Max 3-
Satisfiability problems and the set of permutation flow-shop problems, the initial solution for the subsequent
problem can be obtained by recording the best solution (Boolean vector, job sequence) found to date, while
optimizing over discrete-optimization problem D; and using this solution (Boolean vector, job sequence) as
the initial solution for the subsequent discrete-optimization problem D.

Vaughan et al. (2005) report new computational results using the SGHC algorithm to address a randomly
generated set of four TSPs and a randomly generated set of four Max 3-Satisfiability problems. For the set of
four traveling-salesman (Max 3-Satisfiability) problems, simulated annealing (threshold accepting) is
embedded in the SGHC algorithm framework. For comparison purposes, the same heuristics are also applied
individually to each discrete-optimization problem in the sets. A total of 30 independent replications were
executed for each SGHC and GHC algorithm formulation, where each replication was initialized with a
different randomly generated initial solution. All the experiments were run in Matlab 6.5 on a 2.4MHz
Pentium IV with 512 MB of RAM. The means x and the standard deviations o were computed from the
objective-function values of the best solutions found for each of the 30 replications. These measures allow
the SGHC and the GHC algorithms to be compared computationally, and hence assess their relative
effectiveness and efficiency.

Each set of problems addressed with the SGHC algorithms used the problem probability mass function

22

oo, (6 Do DY) =1/ D D)V [E (L1 ADs DY %y (1)
o, U6 AD D=1+ 3 1/ (DL DYILE (1) ADs D=0, (16)
g=1 =
q#x I£x

for every y,g=1,2, 3,4,y = q and for every k=1, 2, ..., K, with the detachment metrics p(D,, D) reported in
Vaughan et al. (2005). This problem probability mass function results in a stationary and ergodic Markov
chain {¥(k)} (see Vaughan et al. 2005) with transition matrix T(k), where Ty (k) = hy(k, oD, D))).
Therefore, if T = T(k) is irreducible and aperiodic, then as k approaches infinity, the SGHC algorithm is
executing over the solution space of each discrete optimization problem in S with probability 7, where 7= 2T

and in, = | (Isaacson and Madsen 1985). Moreover, this problem probability mass function guarantees that
i=1

the discrete optimization problem over which the SGHC algorithm is executing changes at every outer-loop

iteration k (i.e., (k) # W(k-1), forallk=1,2, ...).

To illustrate the application of an SGHC algorithm on a set of TSPs, 25 cities were randomly generated
on a 100 x 100 unit grid. Four TSPs (D,, D, D;, D,) of size |£3| = 20, 22, 24, and 25, for y = 1, 2, 3, 4, were
created by randomly selecting |2} of the 25 cities for each TSP.

Computational results with simulated-annealing SGHC algorithms are reported. For comparison
purposes, computational results with simulated annealing applied to each problem individually are also
reported. The 2-opt neighborhood function (Aarts and Lenstra 1997) was used for all executions of the
SGHC and GHC algorithms. The SGHC detachment metric was used in (15) and (16) to create the transition
matrix

0 0.2703 0.4054 0.3243
0.1667 0 0.5000 0.3333

T= , 17
0.1429 0.2857 0 0.5714

0.1304 0.2174 0.6522 0

with stationary distribution 7 = (.1259, .2041, .3571, .3129). The fraction of iterations that the SGHC
algorithm actually searched in each problem is 7 = (.122,.204, .360, 0.317), which is an estimator for 7. The
SGHC algorithm inner- and outer-loop bounds were K = 400 and N = N(k) = 400 for all k. The inner- and
outer-loop bounds for the four GHC algorithms were K = 250 and N = N(k) = 160 for all . Therefore, the
total number of iterations executed (i.e., 160,000) for the single SGHC algorithm execution and for the four
GHC algorithm executions {one for each discrete optimization problem) was identical.

For simulated annealing, #, was updated by multiplying the previous temperature parameter by the
increment multiplier 8= 0.98 (i.e., &= B 1) with initial temperature parameter #,= (0.2)(25)(M), where M is
the maximum distance between any two of the 25 cities. The hill-climbing random variable was Ri(aX7), @) =
~t, In(V), for all (i), ® € n(a(i)), and k = 1, 2, ..., K, where U = U(0, 1). These values were found by
determining (experimentally) the parameters that produced the best results for the simulated-annealing
algorithm applied to the four problems. Note that the values reported for 1 and o in Tables 1-3 are rounded to
one decimal.

Table 1 Simulated Annealing GHC and SGHC Algorithm Results

Algorithm D, D, D; D,
GHC u 4070 426.1 4363 441.7
o 2.3 5.0 6.9 6.6
SGHC u 4057 4229 4332 4437
o 0.5 1.9 3.5 6.5

The results in Table 1 suggest that the SGHC algorithm slightly outperformed the GHC algorithm (as
measured by g.) for the first three problems being addressed, and slightly underperformed the last problem
(which also corresponds to the problem with the largest objective function value). The SGHC algorithm
results also resulted in smaller standard deviations than the results obtained with the GHC algorithms, which
indicate that the SGHC algorithm results are more predictable. Note that the SGHC and GHC algorithms
results took approximately the same time to execute (the average CPU time per set of thirty replications was
670 seconds for the SGHC algorithm and 169 seconds for each GHC algorithm).

23

The best solutions found for the four problems D), D, D; and D, were 405.6, 421.6, 430.4, and 435.8

respectively. The SGHC algorithm found these solutions 28, 16, 5, and 3 times (out of the thirty replications),
respectively, while the GHC algorithms found these solutions 18, 7, 3, and 4 times (out of the thirty
replications), respectively. This suggests that for the problem with the overall best solution, the SGHC
algorithm may be most effective in finding the corresponding best solution.
To assess further the effectiveness of SGHC algorithm, a sequential version of GHC algorithms (termed
sequential GHC) was applied to the four problems, D, D;, D;, D,. For example, for the sequence of problems
D,;D,D;D,, simulated annealing was applied to problem D; with K =250 and N = N(k) = 160 for all £. Then,
the best solution obtained for problem D, was used to create an initial solution for simulated annealing applied
to problem D,, with K = 250 and N = N(k) = 160 for all &. The same procedure was then followed (in
sequence) for problems D; and D,. Note that all 4! = 24 permutations of D,, D,, D;, D, were considered, with
the results for all these experiments reported in Table 2. The SGHC algorithm results were slightly better
than the best results obtained using this sequential GHC algorithm over the 24 permutations of D;, D,, D;, D,
(see the bold values in Table 2). Moreover, the CPU time (averaged over the 24 permutations of Dy, D,, D3
and D ,) per set of thirty replications was 668 seconds. This suggests that the SGHC algorithm may be an
efficient means to get the benefit of considering all problem permutations for the sequential application of
GHC algorithms.

To assess the impact of the detachment-metric approach in defining the transition matrix, the following
two uniform transition matrices were considered:

[0.25 025 025 0.25

025 025 025 0.25
Tl = (1 8)
025 025 025 0.25

1025 025 025 0.25

and
0 1/3 1/3 1/3
/3 0 1/3 1/3

T,= , 19
113 13 0 1/3 (19)

/3 1/3 1/3 0

both with stationary distributions 7 = (0.25, 0.25, 0.25, 0.25). Transition matrix T results in random
movement across the four problems (including the current problem), while matrix T, results in random
movement to a new problem, at each outer-loop iteration. The SGHC algorithm results using these two
transition matrices are reported in Table 3. Comparing these results with Table 1 suggest that the SGHC
algorithms yielded almost identical results across the three different transition matrices. The average
computational time using T; and T, were comparable to those obtained with 7. Therefore, the primary benefit
of using the detachment metric approach in defining the transition matrix may be to satisfy the convergence
conditions in Vaughan et al. (2005). This would be analogous to designing simulated-annealing algorithms
based on convergence conditions that are rarely used in practice. Further research is needed to assess better
the impact of the transition matrix on the performance of the SGHC algorithm.

A set of four Max 3-Satisfiability problems was obtained by randomly generating 90 clauses from 20
literals, where each literal is negated with probability 2. Four Max 3-Satisfiability problems (D, D, Ds, D,)
of sizes |£2| = 84, 85, 86, and 90, for y = 1, 2, 3, 4, were defined by randomly selecting |£2| of the 90 clauses
for each Max 3-Satisfiability problem. These four problems have clause-to-variable ratios of 4.2, 4.25, 4.3,
and 4.5, respectively. Note that the hardest Max 3-Satisfiability problems occur when the clause-to-variable
ratio is approximately 4.25 (see Selman et al. 1992).

Computational results with threshold-accepting SGHC algorithms are reported. To be consistent with the
set of TSP, the Max 3-Satisfiability problems are formulated as minimization problems (e.g., 95.7% of the
clauses satisfied is expressed as an objective function value of -0.957). Computational results are also
reported with threshold-accepting applied to each problem individually. The values reported for x and o in
Tables 4-6 are rounded to three decimal places.

Using the detachment metric described in Vaughan et al. (2005), the resulting transition matrix is

0 02376 0.3267 0.4356
02261 0 02764 0.4975
02571 0228 0 0.5143)
0.2703 0.3243 0.4054 0

-

24

with stationary distribution 7= (.2027, .2130, .2576, .3267). The actual fraction of iterations that the SGHC
algorithm searched in each problem is 7 = (. 203, .210, .261, .327). The SGHC algorithm inner- and outer-
loop bounds were K = 400 and N = N(k) = 3 for all k. The inner- and outer-loop bounds for the four GHC
algorithms were K = 300 and N = N(k) = 1 for all k. Therefore, the total number of iterations executed (i.e.,
1,200) for the single SGHC algorithm execution and the four GHC algorithm executions (one for each
problem) were identical. For threshold accepting, the hill-climbing random variable is Ri(exXi), @) = Oy, for
all (i), » € 7{aXi)), and k=1, 2, ..., K, where Oy = (0.98)"Q, with Qp = 1.
Table 2 Sequential Simulated Annealing GHC Algorithm Results
D] D2 D3 D4

Sequence 7, o)7 o 7 o 7 o

D\D:D;Ds 4075 24 4256 45 4365 6.0 4413 56

DiD:DD; 4067 1.6 4256 49 4348 59 4424 58

D:D;D;Ds 4074 1.7 4257 52 4345 54 4441 7.1

D;D;DiD; 4069 13 4258 40 4355 71 4429 7.8

D\DDsD; 4067 1.6 4248 39 4355 59 4412 6.7

DiD,D:D; 4068 1.6 4247 45 4366 73 4425 6.6

D:D:D;D; 4067 1.5 4247 41 4325 39 4409 53

D:D;D,D; 4071 2.0 4252 52 4359 69 4422 6.7

D;DsDiD; 4067 1.7 4252 54 4343 59 4416 58

D,D;DD; 4066 1.9 4233 22 4359 7.0 4423 15

D;DDiD; 407.0 1.5 4258 4.8 4373 73 4418 6.5

D;D,D;sD; 4067 1.4 4260 57 4344 6.0 4416 70

DsD:D;Dy 4063 1.4 4247 44 4359 65 4432 69

D:D:D/D; 4070 14 4254 42 4349 54 4414 6.1

D:D;D/\D;, 4074 2.7 4234 20 4350 56 4433 7.0

D;D:D,D; 4066 13 4250 48 4362 6.5 4455 8.0

D:D,D;D; 4070 2.0 4246 39 4341 51 4437 76

D;D,D;D; 4072 2.6 4252 5.1 4343 52 4417 7.1

D,D;D;D; 406.8 1.6 4248 3.1 4335 41 4431 170

DiDiDsD; 4069 1.6 4249 56 4355 55 439.6 6.0

D.D:DiD; 4073 1.6 4258 5.6 4355 7.3 4407 45

DiD:DsD; 4065 1.8 4248 45 4352 6.6 4424 72

D,D;D/D; 4071 19 4256 56 4343 4.6 4416 6.8

D,D;D;D; 4067 14 4234 24 4347 5.6 4445 13

Table 3 Simulated Annealing SGHC Algorithm Results (with T; and T)

Transition
Matrix D] Dz D3 D,
T, Y7 405.7 423.0 4357 4434
1 0.5 2.1 5.6 7.3
T, 7 405.8 422.6 4358 4435
g 0.7 1.5 5.5 5.6

Table 4 Threshold-Accepting GHC and SGHC Algorithm Results
Algorithm D, D, D3 D,
GHC -0.988 -0.993 -0.988 -0.986
0.009 0.009 0.011 0.012

H
c

SGHC U -0.994 -0.995 -0.994 -0.993
c 0.006 0.007 0.007 0.007

25

The results in Table 4 suggest that the SGHC algorithm is more effective than the GHC algorithm, as
measured by 4 for the problem being studied. Moreover, over the 30 replications, the SGHC algorithm was
able to determine that each of the four problems were satisfiable for 16, 19, 16 and 14 replications,
respectively, while the GHC algorithms were able to determine that each of the four problems were satisfiable
for 8, 18, 8 and 8 replications, respectively. In addition, the standard deviations for the SGHC algorithm are
significantly smaller than the standard deviations for the GHC algorithm. The CPU time per set of thirty
replications was 96 seconds for the SGHC algorithm and 169 seconds (on average) for each GHC algorithm.

As described for the TSPs, a sequential application of GHC algorithms was applied to D;, D;, D3, and D,.
In particular, threshold-accepting was applied to problems D,, D, D;, and D, in sequence, with X = 300 and
N = N(k) = 1 for all k, where the best solution obtained for the current problem was used to create an initial
solution for threshold-accepting applied to the subsequent problem in sequence. As for the TSPs, all 4! =24
permutations of D, D,, D;, D, were considered, with the results over all these experiments reported in Table
5. Once again, the SGHC algorithm results were comparable to the best results (see the bold values in Table
5) obtained using this sequential GHC algorithm. The CPU time (averaged over the 24 permutations of D, D
2, D3 and D) per set of thirty replications was 165 seconds.

To assess once again the effectiveness of the detachment-metric approach in defining the transition
matrix, transition matrices T; and T, were considered. The results with the SGHC algorithm using these two
transition matrices are reported in Table 6. The average computation time using T; and T, were comparable
to those obtained with transition matrix 7. The same observations that were made for T, T;, and T, used for
the set of TSPs also apply for the set of Max 3-Satisfiability problems.

The SGHC algorithm framework has been introduced to address sets of related discrete optimization
problems, that generalizes the results reported in Vaughan et al. (2000) for a set of manufacturing-design
problems. Jacobson et al. (2006b) also report the application of this framework for a set of combat search-
and-rescue operation problems.

4. Neighborhood Function Design Properties

An outcome of this research effort has been an extensive analysis to gain a more thorough understanding of
the properties of neighborhood functions for local search algorithms applied to hard discrete optimization
problems. Armstrong and Jacobson (2005) consider the requirements of neighborhood functions for local
search algorithms that ensure that such algorithms can find global optima. They prove that data independent
neighborhood functions with the smooth property (i.e., all strict local optima are global optima) for Max 3-
Satisfiability must contain all possible solutions for large instances, that data independent neighborhood
functions with the smooth property for 0-1 Knapsack are shown to have size with the same order of
magnitude as the cardinality of the solution space, and that data independent neighborhood functions with the
smooth property for TSP are shown to have exponential size. These results also hold for certain polynomially
solvable sub-problems of Max 3-Satisfiability, 0-1 Knapsack and Traveling Salesman Problem (TSP).

The effectiveness of local search algorithms (Papadimitriou and Steiglitz 1982) on discrete optimization
problems is highly dependent on the choice of neighborhood function. The results describe here prove that
the only data independent neighborhood functions with the smooth property (all strict local optima are global
optima) for Maximum 3-Satisfiability (Garey and Johnson 1979) are neighborhood functions that contain all
possible solutions for large instances. More precisely, if a given neighborhood function for Maximum 3-
Satisfiability has the smooth property, then, for instances with » > 4 Boolean variables, the neighborhood
function of every solution x contains all possible solutions except for the solution x itself. A result for 0-1
Knapsack shows that data independent neighborhood functions with the smooth property must have size that
is ®(2") where n denotes the number of items in the problem instance. Furthermore, a neighborhood function
n* with the smooth property for 0-1 Knapsack is given so that if n(Z, x) « 1*(J, x) for some instance I and
solution x, then 1 does not have the smooth property. The neighborhood function n* is said to be the minimal
data independent neighborhood function with the smooth property for 0-1 Knapsack. Note that a
neighborhood function n™® consisting of all solutions for instances of Maximum 3-Satisfiability (with n > 4
Boolean variables) also has the property that if n(Z, x) ¢ n""(, x) (for an instance I with »n > 4 Boolean
variables) and solution x, then 1 does not have the smooth property. The results reported here also show that
if a given TSP neighborhood function (Lawler et al. 1985) has the smooth property, then the neighborhood of
every solution has cardinality €(2"?), where n denotes the number of cities in the problem instance.

The results described here are obtained by constructing instances of the discrete optimization problem
such that specified data independent neighborhood functions have a strict local optimum that is not a global
optimum. In particular, instances are created where there is a unique global optimum and a unique solution
with the second best objective function value. The solution with the second best objective function value is
chosen such that the unique global optimum is not in its neighborhood. This implies that the solution with the
second best objective function value is a strict local optimum. By construction, the classes of instances used
in the proofs form polynomially solvable sub-problems of Maximum 3-Satisfiability, 0-1 Knapsack and TSP.

26

Therefore, the results listed in the first paragraph also hold for polynomially solvable sub-problems of
Maximum 3-Satisfiability, 0-1 Knapsack and TSP. For example, there exists a polynomially solvable sub-
problem of Maximum 3-Satisfiability such that data independent neighborhood functions with the smooth
property must contain all possible solutions for instances with n > 4 Boolean variables.

Table 5 Sequential Threshold Accepting GHC Algorithm Results
D] D2 D3 D4

Sequence Y7 o 7 o 7 o U o

DiD:D;D, -0.991 0.009 -0.993 0.006 -0.991 0.008 -0.991 0.007
D,D,;D,D; -0.991 0.009 -0.991 0.008 -0.993 0.006 -0.989 0.009
D,D;D;D, -0.991 0.009 -0.995 0.007 -0.992 0.007 -0.990 0.010
D,D;D,D, -0.986 0.010 -0.993 0.010 -0.991 0.007 -0.992 0.007
D,DyD;D; -0.992 0.006 -0.993 0.009 -0.993 0.008 -0.988 0.010
D;DyD;D; -0.990 0.007 -0.993 0.008 -0.991 0.010 -0.994 0.007
D.D,D;Dy -0.993 0.009 -0.994 0.007 -0.997 0.005 -0.990 0.007
D;D,D,D; -0.991 0.009 -0.992 0.008 -0.990 0.008 -0.992 0.006
D;D;D,Dy -0.989 0.010 -0.991 0.010 -0.993 0.008 -0.990 0.010
D:D;D.D, -0.992 0.007 -0.995 0.007 -0.991 0.006 -0.990 0.009
D;D4D,D; -0.991 0.008 -0.993 0.009 -0.991 0.006 -0.991 0.008
D;D.D;D; -0.990 0.008 -0.992 0.008 -0.992 0.007 -0.991 0.007
D;D,D;D, -0.991 0.009 -0.993 0.008 -0.991 0.007 -0.989 0.009
D;D,DyD; -0.990 0.006 -0.995 0.008 -0.993 0.008 -0.990 0.006
D;D;D,Dy -0.991 0.008 -0.993 0.010 -0.989 0.009 -0.989 0.008
D;D;DD, -0.990 0.009 -0.993 0.010 -0.988 0.011 -0.993 0.007
D;D,D,D, -0.989 0.007 -0.993 0.008 -0.991 0.008 -0.989 0.009
D;D,D;D; -0.992 0.007 -0.992 0.008 -0.993 0.009 -0.991 0.007
DyD,;D;Ds -0.992 0.009 -0.993 0.008 -0.993 0.007 -0.993 0.006
DyD,D;D; -0.992 0.006 -0.989 0.008 -0.992 0.007 -0.991 0.011
DyD,D,D;s -0.990 0.008 -0.992 0.008 -0.994 0.008 -0.987 0.012
DuD;D;D, -0.990 0.009 -0.993 0.008 -0.991 0.008 -0.989 0.012
D.D;D,D; -0.989 0.008 -0.992 0.007 -0.992 0.008 -0.991 0.011
D.D;D;D; -0.990 0.008 -0.990 0.010 -0.993 0.006 -0.989 0.010

Table 6 Threshold-Accepting SGHC Algorithm Results (with T} and T)

Transition
Matrix D] D, D; D,
T, y7 -0.991 -0.993 -0.991 -0.991
o 0.008 0.009 0.010 0.009
T, Y7, -0.992 -0.993 -0.992 -0.992
o 0.007 0.008 0.008 0.008

A neighborhood function for problem IT in NPO (NP Optimization) (Ausiello et al. 1999) is a rule that
maps an instance and feasible solution pair (Z, x), where 7 € D and x € SOL(J), to a set of feasible solutions.
Therefore, a neighborhood function n for problem IT satisfies n(Z, x) = SOL(J) for every instance I € D and
every solution x € SOL(J). Given an instance and feasible solution pair (7, x), where 7 € D and x € SOL(J),
n{, x) is referred to as the neighborhood of solution x. Note that a solution is not permitted to be a member
of its own neighborhood (i.e., x & n(J, x) for all instances [€ D and solutions x € SOL(J)). This restriction is
consistent and compatible with the local search algorithm formulation.

To characterize properties of neighborhood functions, the following definitions are needed. Define the

size of a neighborhood function 1 for an instance I to be rgoat:)((])ln(l ,x)| . A neighborhood function 1 for Il is

complete if (I, x) = SOL(J) — {x} for every instance I € D (with length[I] sufficiently large, since the size of
the neighborhood function is analyzed asymptotically) and x € SOL(J). A neighborhood function in which all

27

local optima are global optima is said to have the global search (GS) property. A neighborhood function in
which all strict local optima are global optima is said to have the smooth property. For every solution x, a
neighborhood function that can be searched in polynomial time for an improving solution or else x is deemed
a local optimum is said to be polynomially computable.

The following definitions will be given for a maximization problem. A solution x € SOL(J) is a (strict)
local optimum if m(I, x) (>) 2 m(l, y) for all y € n(J, x), and a solution x € SOL(J) is a global optimum if m(l,
x) = m(l, y) for all y € SOL(/). Data independent neighborhood functions are defined for discrete
optimization problems in NPO that can be formulated as consistent optimization problems (i.e., there exists a

sequence of sets {An }:;1 such that A, ¢ {0,1}" and every instance I can be represented as max m(Z, x) subject

to x € A,, where m is a polynomially computable objective function and » is a positive integer that is
polynomial in the length of instance I). To be independent of the problem data, a neighborhood function n
must satisfy the following property for all positive integers »:

Let I, and L be instances denoted as max m([;, x) subject to x € A,, and max m(J,, x) subject to x € A,
respectively. Then (I, x) =n(h, x) forallx € A,.

The data independent neighborhood function definition depends on the representation of the problem as a

consistent optimization problem. Therefore, for the optimization problems discussed here, the sets {An}"o

n=1
will be specified. In particular, Maximum 3-Satisfiability and 0-1 Knapsack are consistent where {A,, }:=1 are

all Boolean vectors over » dimensions, while TSP is consistent where {An}°0 are the collection of distinct

n=1
Hamiltonian tours over the n cities. ‘A neighborhood function is reasonable if it is independent of the
problem data and has polynomial size. Reasonable neighborhood functions have been studied since it is
conjectured that their properties may indicate the difficulty of a discrete optimization problem (Tovey 1985).
Note that the restriction to polynomially sized neighborhood functions is not, in general, always necessary for
iterations of a local search algorithm to be completed in polynomial time. In particular, there exist several
exponentially large neighborhood functions for NP-hard discrete optimization problems, such as TSP, which
can be searched in polynomial time (Ahuja et al. 2003).

A limited number of papers report results that prove that certain discrete optimization problems have no
reasonable neighborhood function with the GS or smooth properties. Vizing (1977) and Savage et al. (1976)
independently show that any problem parameter independent neighborhood function of TSP for which all
local optima are global optima must be exponentially large, hence there does not exist a reasonable
neighborhood function for TSP that has the GS property. This result is extended here by showing that data
independent neighborhood functions with the smooth property must have size of Q(2") where n denotes the
number of cities in the TSP instance. Papadimitriou and Steiglitz (1978) show that all 4-opt neighborhood -
functions for TSP do not have the GS property and their local optima can have cost that is arbitrarily worse
than the cost of global optima. In particular, Papadimitriou and Steiglitz (1978) show that there exist instances
of TSP with 8 cities, for which there is a unique optimal tour and 2"'(n — 1)! tours that are second best with
arbitrarily high cost. Furthermore, all of these 2™'(n — 1)! tours that are second best cannot be improved
without changing fewer than 3» edges. Tovey (1985) shows that every reasonable neighborhood function for
Maximum Clique and Maximum Satisfiability do not have the smooth property. This Maximum 3-
Satisfiability result is strengthened here by showing that all data independent neighborhood functions for
Maximum 3-Satisfiability do not have the smooth property, except for neighborhood functions that contain all
possible solutions for instances with n > 4 Boolean variables. Rod! and Tovey (1987) also demonstrate that
for Maximum Independent Set, there exists a graph G (up to the relabeling of the vertices) such that all
neighborhood functions of polynomial size have exponentially many local optima.

Showing that particular NP-hard discrete optimization problems do not have a reasonable neighborhood
function with the smooth property is important since it is conjectured that this condition is characteristic of all
NP-hard discrete optimization problems. In other words, it is conjectured that all NP-hard discrete
optimization problems have the property that every reasonable neighborhood function does not have the
smooth property. This result is likely to be hard to prove in general since it implies that P # NP (Tovey 1985).
Conversely, a discrete optimization problem is not necessarily hard if it does not have a reasonable
neighborhood function with the smooth property, since there exist polynomially solvable such problems that
do not have a reasonable neighborhood function with the smooth property. The results reported here for
Maximum 3-Satisfiability, 0-1 Knapsack and TSP also hold for corresponding polynomially solvable sub-
problems.

The results reported do not rely on complexity theory assumptions; they show that a large number of data
independent neighborhood functions for Maximum 3-Satisfiability, 0-1 Knapsack, and TSP do not have the
smooth property. This is in contrast to a similar result in Yannakakis (1997) that relies on the assumption that
P=NP or NPxco-NP. Suppose that I1 is an optimization problem and 7 is a neighborhood function such that

28

the local search problem (IT, 1) is in PLS (Johnson et al. 1988). Yannakakis (1997) shows that if IT is
strongly NP-hard (NP-hard), then 1 cannot have the GS property unless P = NP (NP = co-NP). Under the
assumption that P = NP, since Maximum 3-Satisfiability is strongly NP-hard, the Maximum 3-Satisfiability
result reported here implies that any neighborhood function (which can be searched in polynomial time) with
the GS property for Maximum 3-Satisfiability must be data dependent. Also, the 0-1 Knapsack (TSP) result
reported here implies that any neighborhood function (which can be computed in polynomial time) with the
GS property for 0-1 Knapsack (TSP) must have size ©(2") (Q(2™)) or else it must be data dependent, unless
NP = co-NP (P = NP).

To describe the results, several discrete optimization problems are now formally described. For ease of
notation, let x denote a non-negated literal and X denote the corresponding negated literal. Therefore, a truth
assignment ¢ satisfies the literal x (X) if and only if #(x) = T (¢(x) = F).

Maximum Satisfiability: Given m clauses, over » Boolean variables X = {x,x,...,x,}, find a truth
assignment ¢ : X — {T,F} that maximizes the number of satisfied clauses.

Maximum 3-Satisfiability is a special case of Maximum Satisfiability in which each clause has exactly
three literals. Given a knapsack with a finite capacity and a (finite) collection of items, where each item has
two integers associated with it (i.e., size and value), the objective of 0-1 Knapsack is to identify a subset of
items that fit into the knapsack and have highest value. Instances of 0-1 Knapsack are formulated with
respect to the definition of a consistent optimization problem.

0-1 Knapsack: Given vectors s = (s(1), sQ2),..., s(n)), v = (W(1), v(2),..., ¥(n)), where s(i), v(i) € Z', and
capacity B € Z', find the vector x = (x;, Xa,..., X,) € {0,1}" that maximizes the objective function

=Y v(@)max{0, Y x,;s({) — B} + X x,v(i).
i=l1 i=1 i=]
In this definition, s(i) denotes the size of item 7, v(7¥) denotes the value of item 7, and B denotes the size of

the knapsack. The term — iv(i) max{0, ix,s(i) — B}is a penalty function that ensures that any solution of 0-

i=t i=1
1 Knapsack, for which the collection of items exceeds the size of the knapsack, will have a nonpositive
objective function value.
Symmetric TSP is now formally stated.
Traveling Salesman Problem (TSP): Given a collection of # cities {x,, x,..., x,} and distances d(x;, x;) for
each pair of cities x; and x;, where x; # x;, find a Hamiltonian circuit (permutation of the » cities, y1y2.... s,
where for each i, y; = x; for some j and y; # y; for all i # k) with smallest total length

(@070 + 8 d07.0):

Results on the size of data independent neighborhood functions for Maximum 3-Satisfiability, 0-1 Knapsack
and TSP that have the smooth property are reported. Theorem 9 implies that the only data independent
neighborhood functions for Maximum 3-Satisfiability with the smooth property are the complete
neighborhood functions.

Theorem 9 (Armstrong and Jacobson 2005): If n is a data independent neighborhood function with the
smooth property for Maximum 3-Satisfiability, then, for each instance I of Maximum 3-Satisfiability and
truth assignment ¢ over » > 4 variables, m(Z, ¢) consists of all truth assignments over the » variables, except
for the truth assignment ¢ itself.

In contrast to the result for Maximum 3-Satisfiability, there exists a data independent neighborhood
function with the smooth property for 0-1 Knapsack that is not complete. The size of data independent
neighborhood functions for 0-1 Knapsack can be given as a function of the number of possible items.
Theorem 10 shows that there exists a data independent neighborhood function n* with the smooth property
for 0-1 Knapsack that has size ®(2"). "

Theorem 10 (Armstrong and Jacobson 2005): There exists a data independent neighborhood function with
2" = 2" 4y k42, for neven

,forn>1,
m D2 _ a2 Ly k42, for modd

the GS property for 0-1 Knapsack with size f(n) = {2
where n denotes the number of possible items.

Theorem 11 shows that the neighborhood function n* described in the proof of Theorem 10 is the
minimal neighborhood function with the smooth property. Therefore, Theorem 11 implies that a data
independent neighborhood function with the smooth property for 0-1 Knapsack must have size @(2").

Theorem 11 (Armstrong and Jacobson 2005): Let n* be the neighborhood function for 0-1 Knapsack that is
given in the proof of Theorem 2. If 7 is a data independent neighborhood function such that n(Z, x) 1%, x)

29

for some x € {0,1}" (r > 1) and instance 7, then 1| does not have the smooth property.

Theorem 12 shows that for every reasonable neighborhood function of TSP, there exists an instance of
TSP with strict local optima that are not global optima; hence TSP has no reasonable neighborhood function
with the smooth property. Furthermore, Theorem 12 shows that many exponentially-sized and data
independent neighborhood functions do not have the smooth property. The proof of Theorem 12 follows by
starting with an arbitrary solution @ and choosing another solution w4 (that is not a neighbor of @) from an
exponential set of solutions 4’ (Hamiltonian circuits) such that there does not exist any solution using edges
from only @ and w4, except for the solutions @ and o, themselves. The distances between the cities are then
defined so that w4, and @ are the unique global optimum and unique second best solution (Hamiltonian
circuit), respectively. For TSP, the size of data independent neighborhood functions can be given as a
function of the number of cities » in an instance.

Theorem 12 (Armstrong and Jacobson 2005): If 1 is a data independent neighborhood function for the TSP
with the smooth property, then I?grl}(])|n(l ,x)| = Q(2"°) where n denotes the number of cities.

Similar to Theorems 9 and 10, the class of instances used in the proof of Theorem 11 can be formulated
into a polynomially solvable sub-problem. It follows that there exists a polynomially solvable sub-problem of
TSP such that a data independent néighborhood function m with the smooth property must satisfy

Ié‘l()i{l(l)|’r](1 , x)l = Q(2"™). All these results demonstrate a drawback of local search algorithms that use data

independent neighborhood functions for Maximum 3-Satisfiability, 0-1 Knapsack and TSP. These results
also provide a first step towards showing that a large class of NP-hard discrete optimization problems has the
property that every reasonable neighborhood function does not have the smooth property.

A difficulty with local search algorithms is that neighborhood functions for NP-hard discrete optimization
problems typically have many (strict) local optima that are not global optima. The results reported here show
that a large class of neighborhood functions for Maximum 3-Satisfiability, 0-1 Knapsack and TSP do not have
the smooth property. In particular, the complete neighborhood functions are shown to be the only data
independent neighborhood functions with the smooth property for Maximum 3-Satisfiability. The smallest
data independent neighborhood function for 0-1 Knapsack is proven to have size with the same order of
magnitude as the solution space size. Furthermore, the results demonstrate the minimal data independent
neighborhood functions with the smooth property for 0-1 Knapsack and Maximum 3-Satisfiability. Every
reasonable neighborhood function (and many exponentially sized data independent neighborhood functions)
for TSP is shown to not have the smooth property.

Armstrong and Jacobson (2006a) examine the difficulty of finding neighborhood functions with a
polynomial number of local optima and where the length of improving paths are bounded above by a
polynomial in the size of the problem instance. They also considers neighborhood functions for which the
order of local optima are bounded above by a polynomial in the size of the problem instance. For an instance I
of a discrete maximization problem with neighborhood function 7 and objective function m, an improving
path of length »n is a sequence of solutions so, s1,..., s, such that s;e n(s.1) and m(s;) < m(su) for all i =
0,1,...,n— 1. The order of a solution s is the rank of the solution in terms of the objective function values. For
example, if I is an instance of maximization problem A with solution space SOL({) and objective function m
such that m(SOL())) = {4,7,9,12}, then any solution s such that m(s) = 12 has order one, any solution s with
m(s) = 9 has order two, any solution s with m(s) = 7 has order three, and any solution s with m(s) = 4 has
order four. A neighborhood function that can be searched in polynomial time (in the size of the problem
instance) for an improving solution, or else correctly concludes that no such solution exists, is called a
polynomially computable neighborhood function. A neighborhood function whose size is polynomial in the
length of the problem instance and independent of the problem data is termed reasonable [10] (see below for
a formal definition). Armstrong and Jacobson (2006a) show that neighborhood transformations and data-

_ independent order transformations (DIOTs) preserve the length of improving paths and the order of local

optima. For example, if problem 4 (DIOT) neighborhood transforms to problem B, then for any (reasonable)
polynomially computable neighborhood function 75 for B, there exists a (reasonable) polynomially
computable neighborhood function 74 for 4 such that for each instance I of 4, an instance f{I) of B can be
constructed in polynomial-time, where for every improving path of I with respect to neighborhood function
14, there exists a corresponding improving path of AI) with respect to the neighborhood function 7, of the
same length. Furthermore, given an improving path (with respect to neighborhood 7)) for I, the solutions on
the corresponding improving path (with respect to neighborhood 7) for A7) will be of the same order. This
implies that if there exists a improving path (with respect to neighborhood 7,) for instance I of A4 that
terminates at a local optimum with order p, then there exists a corresponding improving path (with respect to
neighborhood 775) for instance f{J) of problem B that also terminates at a solution with order p.

30

The objective of this research is to analyze the difficulty in addressing hard discrete optimization
problems with local search algorithms. In particular, its focus is to study the complexity of finding
neighborhood functions with desirable properties for NP-hard discrete optimization problems. One desirable
property for a neighborhood function is to have few local optima that are not global optima, thereby
smoothing out the landscape of the solution space and increasing the likelihood that an improving solution
can be found in the neighborhood of a given solution. The term (strict) L-local is used to represent a local
optimum that is not a global optimum. Ideally a neighborhood function would have few L-locals, each of
which with a relatively small order. The notion of few L-locals and small order are (for the purposes here)
encapsulated by the following definitions. Given a discrete optimization problem 4 and an associated
instance I, a neighborhood function 7 for A4 is said to be (strict) local bounded if the number of (strict) L-
locals is bounded above by a polynomial in the size of I. A (strict) order bounded neighborhood function has
(strict) local optima with order bounded above by a polynomial in the size of I Another desirable property for
a neighborhood function is the notion of finding local optima quickly or in polynomial time, which is
addressed by analyzing the complexity of neighborhood functions with improving paths of polynomial length.
A neighborhood function 7 for problem 4 is said to be compact if for all instances I and all solutions s (of 1),
every improving path from s to a L-local has length that is bounded above by a polynomial in the size of L.
Also, a polynomially computable neighborhood function 7 for problem 4 is said to be semi-compact if for all
instances I and all solutions s (of I), there exists an improving path from s to an L-local that has length
bounded by a polynomial in the size of . »

Armstrong and Jacobson (2006b) defined order transformations such that the ordering imposed by the
objective function is preserved through the transformation. They also introduced neighborhood
transformations between optimization problems that preserve the number of L-locals for polynomially
computable neighborhood functions. These results focus on the number of L-locals rather than the specific
local optima, since the difficulty in addressing hard discrete optimization problems with local search
algorithms often arises out of the number of L-locals and not the number of local optima (since they include
all global optima). Armstrong and Jacobson (2006b) show that if problem A neighborhood transforms to
problem B and B has a local bounded and polynomially computable neighborhood function, then 4 has a local
bounded and polynomially computable neighborhood function. MAX Clause Weighted SAT (MCWS) and
Zero-One Integer Programming (ZOIP) are proven to be NPO-complete with respect to neighborhood
transformations in Armstrong and Jacobson (2006b). MCWS is a generalization of Maximum Satisfiability,
where there is a weight w; (i = 1,2,...,m) associated with each clause and the goal is to find a truth assignment
that maximizes the sum of the weights of the satisfied clauses. Armstrong and Jacobson (2004) introduced
another type of order transformation, called a data-independent order transformation (DIOT), which preserves
the number of L-locals for reasonable neighborhood functions.

The results reported here extend those reported in Armstrong and Jacobson (2004, 2006b) by
investigating how the transformations preserve the length of improving paths. Here, neighborhood
transformations and DIOTs are investigated to show how they preserve improving paths of particular
neighborhood functions. In particular, we show that if there exists a (semi-) compact neighborhood function
for either MCWS or ZOIP, then every problem in NPO has a (semi-) compact neighborhood function. Also, if
there exists a (strict) order bounded neighborhood function for either MCWS or ZOIP, then every problem in
NPO has a (strict) order bounded neighborhood function. An example of a neighborhood transformation from
Traveling Salesman Problem (TSP) to MCWS is also presented, together with an explanation of how the
transformation can be used to define a neighborhood function (or local search algorithm) for TSP given a
neighborhood function for MCWS.

There are a number of other insightful articles related to the material presented here. Johnson et al.
(1988) introduce the class of problems PLS and investigate the complexity of finding local optima for
neighborhood functions of discrete optimization problems. The class of problems PLS contains all local
search problems (discrete optimization problems together with a neighborhood function) in which local
optimality can be verified in polynomial time. The results reported here focus on the existence of a
neighborhood function with a polynomial bound on the length of improving paths, while Johnson et al. (1988)
focus on finding local optima in polynomial time for a given neighborhood function. If a discrete
optimization problem has a polynomially computable and compact neighborhood function, then the
corresponding local search problem must be in PLS. Note that although a given neighborhood function 7 is
semi-compact and polynomially computable, it is not guaranteed that local optima of 7 can be found in
polynomial time, since for a given solution s there can be exponentially many improving paths to L-locals
such that only a few of these improving paths have length that is polynomial in the size of the problem
instance. However, it is interesting to study semi-compact neighborhood functions since if a neighborhood
function is not semi-compact, then local search will not find local minima in polynomial time. Therefore,
semi-compactness of a neighborhood function is a desirable property.

O

31

Jacobson and Solow (1993) and Armstrong and Jacobson (2005) investigate the complexity of finding
polynomial time improvement algorithms for discrete optimization problems. A polynomial time improvement
algorithm is a polynomial-time algorithm such that given any solution, either another solution can be found
with better objective function value or else the algorithm concludes that no such solution exists and the given
solution is a global optimum. A polynomial time improvement algorithm is equivalent to a polynomially
computable neighborhood function with zero L-locals. Armstrong and Jacobson (2005) investigate the
existence of reasonable neighborhood functions, for NP-hard discrete optimization problems, in which there
exists an improving path from every solution to a global optimum. The work presented here does not examine
the existence of improving paths to global optima for neighborhood functions; rather, it considers upper
bounds on the length of improving paths to local optima.

Research on approximation preserving reductions (Ausiello et al. 1995) has some similarities with the
work presented here. The set of problems APX consist of all problems 4 in NPO in which, for some &> 0,
there exists a polynomial time g-approximate algorithm (Papadimitriou and Steiglitz 1982). The set of
problems PTAS (polynomial time approximation scheme) contains all problems in NPO in which there exists
a polynomial time g-approximate algorithm, for all £> 0. Several reductions between discrete optimization
problems have been defined to preserve inclusion in APX or PTAS. For example, Crescenzi and Trevisan
(2000) introduce a new approximation preserving reduction, called PTAS-reducibility, which generalizes
other transformations that preserve approximations. They show that if 4 PTAS-reduces to B and B € PTAS,
then 4 € PTAS. Crescenzi and Trevisan (2000) also show that Maximum Satisfiability is APX-complete
(Maximum Satisfiability € APX and for all 4 € APX, 4 PTAS-reduces to Maximum Satisfiability) under the
PTAS-reducibility. Some problems have been shown to be NPO-complete with respect to an approximation
preserving reduction. Ausiello et al. (1995) show that MAX Weighted Boolean SAT is NPO-complete with
respect to an approximation preserving reduction. The main difference between these articles and the results
presented here are the type of reductions being considered (order preserving reductions rather than
approximation preserving reduction).

Several definitions are needed to describe the results. The set of NPO problems are the set of all discrete
optimization problems A in which the corresponding decision problem of 4 is in NP (Auisello et al. 1995).
An NPO problem 4 is a four-tuple (D, SOL, m, goal) where D is the set of instances of 4, SOL(J) is the set of
solutions for instance Ie D, m(l, s) is the objective function for solution se SOL(J), and goa! is equal to “min”
or “max” depending on the type of optimization problem. For a problem to be in NPO, several conditions
must be satisfied. The set of instances D and solutions s € SOL(/) must be recognizable in polynomial time
in the size of the problem instance I. Furthermore, the objective function needs to be computable in
polynomial time in the size of I Throughout the remainder of this discussion, assume that all discrete
optimization problems are maximization problems. Therefore, any problem in NPO can be represented by the
three-tuple (D, SOL, m).

For every instance I of problem A = (D, SOL, m), a neighborhood function 1(l, s) < SOL(I) maps each
solution s € SOL(J) into a subset of the solution space. The size of a neighborhood function 7 on instance / is

I}vloe})é) |7(I, s)|. For an instance I of a maximization problem, a solution s € SOL(J) is a (strict) local optimum
SE. 5

ifm(I, s) (>) 2 m(, s') for all s € n(l, 5), and a solution s € SOL()) is a global optimum if m(I, s) = m(l, s")
for all s' € SOL(J). A solution s is a (strict) L-local if s is a (strict) local optimum that is not a global
optimum.

For every discrete optimization problem 4 = (D, SOL, m) in NPO, there exists an increasing sequence of
positive integers {n,}, and a corresponding sequence of sets {S,}7, such that for each ieZ', S, c

{0,1}" defines a solution space for an instance of 4. For a given discrete optimization problem, the sequences
{n;}=, and {S,}7, are defined according to some encoding scheme (Garey and Johnson 1979) used for the
solution space. Therefore, for a given discrete optimization problem, the sequences {»,};, and {S,}:, may

be defined differently. However, any two different pairs of sequences {n,;}7, and {n,};, are defined such

that the rate of growth of one of the sequences is polynomial in the rate of growth of the other sequence. In
particular, there exists two polynomials p; and p, such that n}, < pi(n2;) and ny; < py(ny) for all ie Z". For every

~ ieZ', there exists a set of instances D, such that I € D, if and only if SOL(J) = S.. Therefore, 4 can be

represented as the four-tuple ({D,}2,,{S;},,{n}~;» m). This notation modification is used throughout the

rest of the discussion.
A reasonable neighborhood function (Tovey 1985) for a discrete optimization problem 4 =

(D32, . {8:}2,,{n}72,, m) is defined to be a neighborhood function that is polynomial in »; and independent
of the problem data. That is, a reasonable neighborhood function 7 satisfies:

32

(1) |7(I, 5)| < p(n) for all ieZ", Ie D,, and s€ S, where p is a polynomial function.
(2) ForeachieZ', n(l,,s)= n(k, s) for all seS; and I, LeD,,
Let 4 and B be two maximization problems. The problem 4 = (D, SOL,4, m,) order transforms to B =

(Dg, SOLjg, mp), if there exists two functions f'and ¢ that satisfy the following:

¢y ADeD;g for all Ie D4 and fis computable in polynomial time in the size of 1.

(@) For each IeD, and se SOL4(D), q(I, s)eSOLg(A{D). Also, if s’€SOL4() and mu(, s) (>) 2
mu(I, s), then mp(f(1),q(, 5)) (>) = mp(f1), q(1, 57)),

(3) For each Ie Dy, q(l,.) is a one-to-one function and it can be determined (in polynomial time
in the size of 1) if a solution sz € SOL(A)) is also in g(Z, SOL (D),

) Let Q = g(I, SOL4(D) be the set of solutions to problem B, instance f{/), that are “mapped”
from instance I of problem 4. Also, let ° = SOLg(f(])) — g(I, SOL4(J)) be the set of solutions to instance f{)
of problem B that are not “mapped” from solutions of instance /. Then min [my(f(1).5)] 2

max[my(f(1)s)] -

Condition (2) guarantees that for each instance I of A4, the instance f{I) preserves the ordering of the
solutions in I. Condition (3) guarantees that the transformed solutions can be recognized in polynomial time
in the size of instances of problem 4. Condition (4) guarantees that for each instance I, the set of solutions
that are not in g(I, SOL4(J)) have an objective function value no larger than any solution in g(Z, SOL4(J)).
This condition forces the local structure of instance f{J) to be the same as the local structure of instance I,
except that instance fI) may have more solutions than instance /, as long as these extra solutions (that are in
SOLs(AD) — q(I, SOL4(D)) have objective function values that are less than any solution in g(Z, SOL4(D)). If
the function ¢ and its inverse are computable in polynomial time in the size of I, the transformation is said to
be a neighborhood transformation (discussed in detail in Armstrong and Jacobson (2006b). An example of a
neighborhood transformation from TSP to MCWS is given below. The problem 4 € NPO is said to be NPO-
complete with respect to a transformation (denoted by o) if for all problems B € NPO, B « 4.

Suppose A = ({D 4} {8 41 » M4 321 » ma) order transforms to B = ({Dy 32, {S g }it1 s {ngi 1 » ms)
where f (q) denote the transformation of instances (solutions) of 4 to instances (solutions) of B. By the
definition of order transformation, for each instance I € D; there exists an instance f{I) € Dy for some j. The
order transformation is called data-independent if the function ¢ is independent of the problem data of 4 and
the function f satisfies: for every ieZ', there exists jeZ" such that for all I € Dy;, AI) € D Note that all the
transformations defined here are transitive.

Armstrong and Jacobson (2006b) show that if 4 neighborhood transforms to B and B has a local bounded

and polynomially computable neighborhood function, then so does problem 4. They also show that if
problem 4 DIOT to problem B and B has a local bounded and reasonable neighborhood function, then so does
problem 4. These results are extended to show that neighborhood transformations and DIOTSs preserve the
length of every improving path. Suppose that 4 neighborhood or data-independent order transforms to B with
transformation functions fand g. Given a neighborhood function 7 for B, a neighborhood function is defined
for A4 as follows: For each instance I, € D, and s € SOL(Ly), let 75:4(Ls, 8) = {s' : g(L4, s') € 1{(fL4), q(L4, 5))}.
By definition, if fand g represent a neighborhood transformation, then neighborhood 7, is polynomially
computable whenever 7 is polynomially computable (Armstrong and Jacobson 2006b). Similarly, if fand ¢
represent a DIOT and 7 is a reasonable neighborhood function for B, then 7, is a reasonable neighborhood
function for A (Armstrong and Jacobson 2004).
Theorem 13 (Armstrong and Jacobson 2006a): Let 4 and B be two discrete optimization problems such that
A neighborhood transforms to B. If B has a local bounded, semi-compact, and polynomially computable
neighborhood function, then 4 has a local bounded, semi-compact, and polynomially computable
neighborhood function.

The results reported here are for neighborhood functions that are locally bounded. The “local bounded”
term could be removed from all the theorems given below and the augmented result would still hold, since the
transformations preserve local bounded neighborhood functions, order bounded neighborhood functions, and
(semi) compact neighborhood functions independently. The results are given for local bounded neighborhood
functions since the neighborhood transformation and DIOT do not preserve connected neighborhood
functions (i.e., there exists a path between all pairs of solutions where each solution in the path is a neighbor
of the preceding solution). In other words, the neighborhood function 7, may be disconnected when 7is a
connected neighborhood function. Note that it is straightforward to construct disconnected neighborhood
functions for an optimization problem with a polynomial bound on the length of improving paths (for
example, consider the neighborhood function #g, where ng(l,s) = & for all instances I and solutions s).
Therefore, the results would not be interesting with the “local bounded” term removed. The proof of

33

Theorem 14 follows from Theorem 13, with the exception that the neighborhood function 7y, is reasonable if
7 is reasonable (see Armstrong and Jacobson (2004).

Theorem 14 (Armstrong and Jacobson 2006a): Let A and B be two discrete optimization problems in NPO
such that 4 DIOT to B. If B has a local bounded, semi-compact, and reasonable neighborhood function, then
problem A4 has a local bounded, semi-compact, and reasonable neighborhood function.

Theorems 15 and 16, which extend Theorems 13 and 14, are concerned with an upper bound on the length

of every improving path.
Theorem 15 (Armstrong and Jacobson 2006a).: Let 4 and B be two discrete optimization problems such that
A neighborhood transforms to B. If B has a local bounded, compact, and polynomially computable
neighborhood function, then problem 4 has a local bounded, compact, and polynomially computable
neighborhood function.

The proof of Theorem 16 follows exactly from Theorem 15, after noting that the function 7, is
reasonable if # is reasonable (Armstrong and Jacobson (2004). Since the function g of a neighborhood
transformation (from a problem A to a problem B) preserves the order of the solutions between the problems,
the order (or rank) of the final solutions along improving paths are preserved between corresponding
improving paths. In other words, suppose problem 4 neighborhood transforms to B and # is a neighborhood
function for problem B. Given an improving path (with respect to neighborhood function 7,) between
solution s and local optimum s’ of instance I; of problem 4, there exists an improving path (with respect to
neighborhood function 7} between q(I4,s) and g(I4,s') of problem B such that the local optimum g(ls') has
the same order as the local optimum s’ for problem 4.

Theorem 16 9 Armstrong and Jacobson 2006a): Let 4 and B be two discrete optimization problems such that
A DIOT to B. If B has a local bounded, compact, and reasonable neighborhood function, then problem A4 has
a local bounded, compact, and reasonable neighborhood function.

Theorem 17 shows that neighborhood transformations preserve (strict) order bounded neighborhood

functions; it is a restatement of Theorem 13 with the term “(strict) order bounded” used in place of the term
“semi-compact”.
Theorem 17 (Armstrong and Jacobson 2006a): Let 4 and B be two discrete optimization problems in NPO
such that 4 neighborhood transforms to B. If B has a local bounded, (strict) order bounded, and polynomially
computable neighborhood function, then 4 has a local bounded, (strict) order bounded, and polynomially
computable neighborhood function.

Note that Theorem 17 may be restated with the terms “neighborhood transforms” and “polynomially
computable” replaced by the terms “DIOT” and “reasonable.” The proof and statement of this theorem are
omitted, where the proof follows analogously to the proof of Theorem 17. Also, Theorem 17 holds when the
“local bounded” term is removed. Each of the following theorems demonstrate how a different neighborhood
property is preserved by the neighborhood transformation or DIOT. The results reported here and in
Armstrong and Jacobson (2006b), show that if 4 (DIOT) neighborhood transforms to B and B has a
neighborhood with property p, then 4 has a neighborhood with property p; where p can be any of the
following: local bounded, strict local bounded, semi-compact, compact, order bounded, strict order bounded,
(reasonable) polynomially computable. The results imply that a neighborhood function with these good
properties for one problem may be transformed (via a neighborhood transformation or DIOT) to a
neighborhood function for another problem with the same properties.

To demonstrate how the neighborhood transformation or DIOT can be used to define an effective
neighborhood function for one problem given a good neighborhood function for another problem, a
neighborhood transformation is given from TSP to MCWS.

Example: Neighborhood Transformation from TSP to MCWS,
By labeling the cities of a n-city TSP instance as 1,2,...,n, then any instance can be represented by the set {d:
ij =1,2,...,n; j > i} of distances between each pair of cities (dj; equals the distance between city i and city).
To specify a neighborhood transformation to MCWS, a function f is given that maps instances of TSP to
instances of MCWS, and another function g is given that maps solutions of TSP to solutions of MCWS.
Given a n-city TSP instance 1, define f{) to be the set of Boolean variables X={x; : i,j = 1,2,...,n; j > i}, with
the following clauses and weights (to simplify notation let x;; represent x;; when j > i):
clause (x;) with weight —d; for all i,j = 1,2,....n;j > i ;
clause (xin, Xiz,e .oy Xj i1y Xiit1s- - -» Xim) With weight M= (n +1) max{d,.j}for alli=1,2,...,n;
clause (X, %, 5eees X; ;15 X; 41 3eees Xjjseens X,) With weight M for all ij = 1,2,...m; 521 ;
clause (x,

The transformation of solutions g maps a tour ¢ of instance I to a truth assignment ¢ : X—{0,1}", where
t(x;) = 1 if and only if city j follows city / or city i follows city j in tour ¢. Let # represent the 4-flip

Xy, X;) with weight M for ikl =12,...m;j # i, k=i [#i,k=j, 1 %] [#k

34

neighborhood function of MCWS, then 7, is the 2-change neighborhood function of TSP. In general, the
(4+2x)-flip neighborhood of MCWS, where x = 0,1,2,..., corresponds, via the given neighborhood
transformation, to the (2-+x)-change neighborhood of TSP. Now, given an effective procedure for searching
the solution space of MCWS with the (4+2x)-flip neighborhood function, for some x = 0, 1, 2,..., an effective
procedure is obtained for searching the (2+x)-change neighborhood function of TSP. In this sense, the term
effective represents procedures that find local optima in a few number of iterations and/or finds solutions with
low order.

5. Threshold Analysis Performance
The threshold analysis framework for analyzing the performance of generalized hill climbing algorithms has
been introduced. Initial results with this framework are reported in Jacobson et al. (2005a).

For hard discrete optimization problems, local search algorithms have been formulated with the hope of
finding good or near-optimal solutions. Generalized hill climbing (GHC) algorithms (Jacobson et al. 1998,
Johnson and Jacobson 2002a,b) provide a framework for local search algorithms that can be applied to a wide
variety of hard discrete optimization problems. Many well-known local search algorithms can be modeled
within the GHC framework, including simulated annealing (SA) (Kirkpatrick et al. 1983) and threshold
accepting (Dueck and Scheuer 1990). The objective of all these algorithms is to find the best possible
solution using a limited amount of computing resources. A further challenge is to construct algorithms that
find near-optimal solutions for all instances of a particular problem, since the effectiveness of many
algorithms tends to be problem-specific, as they exploit particular characteristics of problem instances (e.g.,
Lin and Kergnihan 1973 for the travelling salesman problem). It is therefore important to assess the
performance of algorithms and devise strategies to improve their effectiveness in solving hard discrete
optimization problems.

There are several results in the literature concerning the asymptotic performance of SA. For SA with an
exponential acceptance probability function, Mitra et al. (1986) and Hajek (1988) develop conditions for three
convergence properties: asymptotic independence of the starting conditions, convergence in distribution of the
solutions generated, and convergence to a global optimum; they also characterize the convergence rate. Anily
and Federgruen (1987) extend these results to SA with general acceptance probabilities by developing
necessary and sufficient conditions for convergence, and provide conditions for the reachability of the set of
global optima. Yao and Li (1991) and Yao (1995) also discuss SA with general acceptance probabilities,
though their primary contribution is with respect to general neighborhood generation distributions. Ferreira
and Zerovnik (1993) develop bounds on the probability that SA obtains an optimal / near-optimal solution.
They also show that random restart local search dominates SA, measured by the probability of finding a
globally optimal solution, as the number of restarts grows. Similar results are reported in Jacobson and
Yucesan (2004a,b). For a comprehensive survey of SA convergence results, see Aarts and Korst (2002) or
Henderson et al. (2003).

There have been a limited number of results on finite-time performance measures for SA. Mitra et al.
(1986) present bounds for the objective function over a finite horizon. Chiang and Chow (1989) and Mazza
(1992) investigate the statistical properties of the first visit time to a global optimum that provides insight into
the time-asymptotic properties of the algorithm as the outer loop counter approaches infinity. Cantoni and
Cerf (1997) investigate optimizing a finite-horizon cooling schedule to maximize the number of visits to a
global optimum after a finite number of iterations. Desai (1999) focuses on finite-time performance by
incorporating size-asymptotic information supplied by certain eigenvalues associated with the transition
matrix. Desai provides quantitative and qualitative information about the performance of SA after a finite
number of steps by observing the quality of solutions related to the number of steps that the algorithm has
taken.

Srichander (1995) examines the finite-time performance of SA using spectral decomposition of matrices.
Srichander shows that for the final solution of SA to converge to the global minimum with probability one, an
annealing schedule on the temperature is not necessary. Furthermore, Srichander shows that annealing
schedules on the temperature produce an inefficient algorithm in that the number of function evaluations
required to obtain a global minimum is extremely large. Srichander also presents a modified SA algorithm
with an iterative schedule on the size of the neighborhood sets that leads to a more efficient algorithm. The
performance of this algorithm on a real-world example is reported. Fleischer and Jacobson (1999) present an
entropy measure of the Markov chain model for SA, and use this measure to compare several finite-time SA
implementations, with different cooling schedules. They show that higher values for this entropy measure
correspond to better finite-time performance, as measured by the likelihood of terminating in a globally
optimal solution. Nolte and Schrader (2001) use results on rapidly mixing Markov chains to obtain bounds
for the stationary distribution of the globally optimal solutions.

Orosz and Jacobson (2002a) report finite-time performance measures for GHC algorithms by analyzing a
GHC algorithm’s ability to visit solutions that are close enough to a global minimum, as measured by the

35

objective function value. Solutions that have objective function value less than or equal to S are referred to as
B-acceptable solutions, where f denotes the objective function value (typically larger than the global
minimum objective function value) that should be visited. This report summarizes research presented in
Jacobson et al. (2005a). They provide a closed form expression for the expected number of iterations to visit
a B-acceptable solutions for the first time for cyclical simulated annealing (CSA), an algorithm that executes
in the same manner as simulated annealing, except that the cooling schedule cycles through a prespecified set
of temperature values. They also show how the expected number of iterations to visit S-acceptable solutions
can be estimated for such algorithms.

Complete details of the GHC algorithm framework can be found in Jacobson et al. (1998). To describes
the resulted presented here, several definitions are needed. For a discrete (minimization) optimization
problem, define the solution space, €2, as a finite set of all possible solutions. Define an objective function f.
£2 — [0, +0) that assigns a non-negative value to each element of the solution space. Two important
components of GHC algorithms are the neighborhood function, 1: £2 — 2%, where 7(w) c 2 for all ® € 2,
and the hill climbing random variables Ry: 2 x Q — 9, k= 12,... . For each solution @ € £ the
neighborhood function 7(w) defines a set of solutions that are close to @ (Aarts and Korst 2002). The
neighborhood function is assumed to be symmetric (i.e., if @’ € 7(@”), then »” € H(w’) for all ', 0" O)
and that w € 7(w) for all @ € £ Moreover, at each iteration of a GHC algorithm, a solution is randomly
generated among all neighbors of the current solution by a neighborhood probability mass function, where the
resulting random variables are conditionally independent (on the current solution). For example, neighbors
are said to be generated uniformly at each iteration of a GHC algorithm execution if, for all @ € (2, with o' €

n@),
P{®' is selected as the neighbor of @ at a given iteration of a GHC algorithm} =1 / l w) .

Unless otherwise stated, assume that neighbors are generated uniformly at each GHC algorithm iteration.

The hill climbing random variables, which are assumed to be independent, determine whether a randomly
generated neighboring solution is accepted during a particular inner loop iteration associated with outer loop
iteration k. Stopping criteria for the inner and outer loops (STOP INNER and STOP OUTER, respectively)
determine when the hill climbing random variable index k increments by one, hence a new hill climbing
random variable is used to accept or reject neighboring solutions. Although the range of the hill climbing
random variables can be the set of real numbers, # in practice they are typically restricted to the set of non-
negative real numbers, % (which is assumed for the rest of the discussion). Therefore, for minimization
problems, when a randomly generated neighboring solution has objective function value greater than the
current solution, then the neighboring solution is accepted (hence becomes the new current solution) if the
difference between the objective function values is not too large (i.e., smaller than the value generated for the
hill climbing random variable). This concept of accepting an inferior solution is the origin for the name “hill
climbing”.

The neighborhood function establishes relationships between the solutions in the solution space, hence
allows the solution space to be traversed or searched by moving between solutions. To ensure that the solution
space is not fragmented, we assume that all the solutions in the solution space (with neighborhood function 7)
are reachable (i.e., for all @', 0" € (2, there exists a set of solutions @y, @;, ..., W, € 2such that w; € Ma.),j =
1,2,...m+1, where @' = ap and " = w,-;). If all solutions in the solution space are reachable, then the
solution space (with neighborhood function 7) is said to be reachable.

The solution space for a discrete optimization problem can be partitioned into two mutually exclusive
and collectively exhaustive sets:

- the set of globally optimal solutions, G = {w* € 2 flo*) <flw) for all w € 2}

- the set of all other solutions, G° = {® € 2 lo*) <Aw), o* € G} where GU G°= Q2

A common goal for discrete optimization problem is to identify a globally optimal solution &* € G.
However, from a practical point of view, solutions that are close enough to a globally optimal solution (where
close enough is measured in terms of the objective function value) for a discrete optimization problem may be
acceptable. To describe such solutions, define the set of Sacceptable solutions,

Dy={we 2fw)<p}for fec A (20)
Note that if g < flw*), o* € G, then Dg= &. Moreover, if f > max, . o flw), then Dy = 2. Lastly,

; l}r(n‘)+ Dg = G, hence G is the upper (right) limit of Dgas fapproaches f{w*) from above.
—f(w :

Each execution of a GHC algorithm generates a sequence (sample) of solutions. In practice, the best
solution obtained over the entire GHC algorithm run, not just the final solution, is reported. This allows the
algorithm to aggressively traverse the solution space visiting many inferior solutions en route to a globally
optimal solution, while retaining the best solution obtained throughout the entire GHC run. Without loss of

36

generality, assume that GHC algorithm runs are initialized at solutions not in Dy (i.e., @(0) € (Dp°).

Therefore, each sequence of solutions is a function of the initial solution and two independent sets of

independently and identically distributed (IID) U(0,1) random variables (i.e., uniformly distributed on the

interval (0,1)),

i) {&}, that generate the neighbors, @ € 7(@()), from the neighborhood probability mass function g(e(i),.)
(hence allows & (i), ®) = flw) — A w(i)) to be computed) at each iteration i = 1,2,...,

ii) {v;}, that generate values for R{a(i),) (i.e., R) to determine whether the w € 7(@()) is accepted or
rejected (i.e., R = & w(i),) or R < X w(i), w), respectively). .

In addition, assume that when comparing different GHC algorithms, the initial solution is given and fixed

across all such algorithms. This means that the initial solution »(0) and ({&},{v}) completely define the

probability of each sequence of solutions generated by GHC algorithms. For simplicity and ease of notation,

@(0) and ({&},{v;}) are suppressed, unless they are needed to avoid ambiguities.

Simulated annealing (SA) is a particular GHC algorithm, with hill climbing random variable, Ry(®, @’) =
Ry = ~-T(k)*In(1-U)), @’e n(w), where the {U;} are IID U(0, 1) random variables and T(k), k = 1,2,..., are the
temperate parameters that define the cooling schedule. Therefore, if f{w) — fw(i)) > 0, then w(i) is accepted
as the current solution with probability ¢ @ ~A«VVT® The temperature parameters are usually set such that
they gradually decrease to zero as k approaches infinity, where SA algorithm then behaves similar to pure
local search algorithm. Hence, given enough iterations, it terminates at either a global w* € G, or a local
optimum @* € L ={w € 2: lw’) 2 flw) for all v’ € n(w)}.

Cyclical simulated annealing (CSA) is a particular type of SA algorithm, where the cooling schedule
cycles through a predetermined set of temperatures during the algorithm’s execution. To simplify the
description and implementation of CSA, suppose that each middle loop is of fixed length 4, which also
corresponds to the length of each CSA temperature cycle, given by T(1), T(2), ..., T(h), where T(n+kh) =
TtwtE+Dh), n = 12,..,h, k = 0,1,... . The outer loop iterations correspond to the number of cycles
executed, while the inner loop iterations correspond to the number of iterations executed at each of the 4
temperature values. The CSA algorithm is described in pseudo-code form:

CSA4 Algorithm
Inputs:
Set the iteration index i =0, k=1
Generate an initial solution o(0) € £2and set »* «o(0)
Set the cycle length /4 and set a single cycle cooling schedule 7(1), T(2),..., T(h)
Repeat
Do forj=1,2,....h
Repeat
Generate a neighboring solution @ € 7(a(?)) and a U(0,1) random variate U
Compute & axi), 0) = fw) — i)
If-T(@) In(1-U) 2 Xw(i), »), then o(i+1) < @
If -7(G) In(1-U) < & wfi), w), then w(i+1) « wfi)
If {eaxi+1)) <fl@*), set o* ¢ aXi+])
iei+l
Until STOP INNER
End Do
k<k+1
Until STOP OUTER

Output: Report o*

Orosz and Jacobson (2002a) introduce and analyze the one-step B-acceptable probability as a finite time
performance measure for GHC algorithms. To describe this measure, consider a GHC algorithm applied to an
instance of a discrete optimization problem, where Ry(w(i),w) = 0, w(i) € Q, w € n(w(i)), for all iterations i =
1,2,..., and for all outer loop iterations k= 1,2,.... At iteration A, define the event D(h,f3), termed the set of S
acceptable solutions, as '

Dhp) ={(a(l),a2),..,0M): w(i) € Q,i=12,...h fw()) <p for some i=1,2,...,h}
={(a(1),a(2),...,0(h): (i) € 2,i=1,2,....h, w(i) € Dy for some i=1,2,....,h} 1)
where flw*) < f<max,.aq w), w*e G. Therefore, the complementary event is
D‘hp) = {(a(l),w(2),.. wh): w() € 2,i=12,...h Aw@))>pforalli=12,.. ,h}
={(o(1),0(2),...,0(h): w(i) € ,i=12,...,h, w(i) ¢ Dgforalli=1,2,...,h}. 22)
The event D(h,f3) defines sequences of / solutions that result from the execution of a GHC algorithm over A
iterations, where one or more solutions have objective function values less than or equal to 8. By definition,
D(h,p) c D(h+1,p) for all iterations h, hence {D(h,f)} is a telescoping, non-decreasing sequence of events in
h.

37

From (2) and (3), the one-step S-acceptable (conditional) probability is defined as
rG.B) =P{DG.B) | D°G-1.B)}
=P{(a(l),w(2),...,00)): o(i) € 2,i=1,2,..../, Aw@)) > B for all i =1,2,... j-1,
Re@)) < B} 1 P{D(-1,8)}. (23)

The one-step B-acceptable probability at iteration j provides a finite-time performance measure for the
effectiveness of a GHC algorithm, namely the ability of the algorithm to visit an element of the solution space
with objective function value less than or equal to S at iteration j given that it has not already visited such a
solution over the first j-1 iterations.

The one-step B-acceptable probability can also be used to obtain an expression for the expected number of
iterations to visit the set of S-acceptable solutions for the first time. In particular, define the random variable
1y to represent the number of iterations needed to visit for the first time an element in the set of S-acceptable
solutions,

=min{j 2 1 : fo) < B} 24)
The relationship between 7; and the one-step f-acceptable probability is described in Lemma 2.
Lemma 2 (Orosz and Jacobson 2002a): Consider a GHC algorithm execution with initial solution generated
such that P{D°(0,8)} = 1. Then

P{z> h) =ﬁ [1=rG,8] = P{D"(h, B)}. 25)

Theorem 18 provides an expression for the conditional expectation of 7.
Theorem 18 (Orosz and Jacobson 2002a): Consider a GHC algorithm execution with initial solution
generated such that P{D°(0,8)} = 1. Atiteration »=1,2,..., if P{z; < h} > 0 for some B > fw*), w* € G, then

E[g|1p<h]=h- hZ_: [1- III1 [1-rG.811/ [l—fll [1-rG.B)11
7= j= J=

The primary difficulty with the expression in Theorem 18 is that it is conditional upon the GHC algorithm
run length., We now consider the CSA algorithm and show how it is possible to use the expression in
Theorem 18 to obtain upper and lower bound estimators for E[zg].

Properties of CSA algorithms are used to obtain upper and lower bounds for E[z5]. For the purpose of this
analysis, and without loss of generality, assume that only outer and middle iterations are considered, and
hence, inner iterations are ignored. Therefore, unless otherwise noted, the total iterations refer to only outer
and middle iterations. For practical purpose, this means that any expression for the expected number of
iterations to reach a f-acceptable solution would need to be rescaled by the number of inner iterations
executed, to determine the total number of outer, middle, and inner iteration executed.

To obtain upper and lower bounds for E[z5], the number of iterations executed can be decomposed into a
set of cycles, each of length 4, where the cycle number of iteration r is denoted by jx(t) = [7h], the ceiling
Sfunction for 7/ h (i.e., the smallest integer greater than or equal to #/ 4). To obtain the cycle in which the
algorithm visits any element in the set of f-acceptable solutions for the first time, define the random variable

Ji(ey) = min{in(@® 2 1 ju@h 21, v=1,2,...} =[75/ h]. (26)

Figure 3 depicts the relationship between j,(z) and r, where j,(z) = for all values of 7 between (j-1)A+1 and jh.
Therefore, if the set of S-acceptable solutions is visited for the first time between iterations (ju(z)-1)A+1 and

Ju(t)h, then Ju(tg) = ju(t).
Figure 3: Relationship between j,(t) and 74

| =T
| | <
I I |)§
0 h 2h Gu@-Dh ju(t)h

Theorem 19 uses the random variable J,(zp) to obtain upper and lower bounds for E[zs], the expected
number of iterations to visit the set of S-acceptable solutions for the first time.
Theorem 19 (Orosz and Jacobson 2002a): Consider a GHC algorithm execution with initial solution
generated such that P{D(0,8)} = 1. Then
L+ h [EWi] 1] <Elgl< 1+h Bl @7)
Theorem 19 provides upper and lower bounds for E[z;] that are functions of 4 and E[J,(z5)]. The practical
llmltatlon in applying these bounds is that they contain infinite summations. In particular, E[J,(7s)]

= Z [H [1 = r(1,8)]] (Orosz and Jacobson 2002a), hence these bounds are not easily computable. This
j=0 i=1

problem is difficult to overcome for GHC algorithms in general. However, since CSA algorithms cycle

38

through a set of temperature parameters, it may be possible to overcome this obstacle. In particular, if the
random variable J,(zg) can be modeled as a geometric distribution with parameter P{zs < 4}, hence E[Jy(7y)] =
1/P{z; < h}, the bounds in Theorem 19 simplify to

L+h[P{tp>h} /P{eg<h}] <E[g] < 1 +h[1/P{rz<h}].

From Lemma 2, P{z; < 4} can be estimated using for a CSA algorithm. Therefore, E[J,(tg)] for such an
algorithm can be estimated using information obtained from replicating each algorithm’s performance over a
single cycle (i.e., over the first 4 iterations). In particular, the probability that the algorithm visits the set of -
acceptable solutions for the first time in cycle m is

P{Jh(l’/;) =m} = P{(m-])h +1 SrﬂSmh}. (28)
Lemma 3 uses (9) to show that if the one-step S-acceptable probability is cyclical over all iterations
(i.e., r(i,p) = r(h+ip) forall i = 1,2,..., where A is the number of iterations in the temperature cycle), then

h
Ju(ty) is a geometric random variable with parameter P{zs<h} =1-[] [1-r(p)].

i=]

Lemma 3 (Jacobson et al. 2005a): Consider a CSA algorithm (with cycle length /) executed with initial

Jh (j+Dh
solution generated such that P{D°0,8)}=1. If I [1-rip)]= 11 [1-r@Gp)]forallj=1.2,..., then
i=(j-1)h+1 i= it

h
Ju(ty) is a geometric random variable with parameter P{z; <h}=1-] [l1-7(p)].
i=]

For CSA algorithms, since the temperature cycles (with cycle length /) are identical, then the probability
of visiting a solution with objective function value less than or equal to S should be the same between cycles.
Once again, though it may be difficult to formally prove this result, it may however be reasonable to assume

Jjh 4Dk
that the (3,8} are cyclic with cycle length %, and hence,][] [1-7G81= 11 [1-r@p)] for allj =
i=(j-1)h+1 i= jh#

1,2,..., and the result in Lemma 3 would apply. Theorem 20 provides upper and lower bounds for E[zg],
under this assumption. Theorem 21 presents a second set of upper and lower bounds under the same
assumption.
Theorem 20 (Jacobson et al. 2005a): Consider a CSA algorithm (with cycle length /) executed with initial
solution generated such that P{D(0,8)} = 1. If Ju(1) is a geometric random variable with parameter P{z; <
h}, then 1 + h [P{tp>h}/ P{r<h}] <E[zg) < 1 + h / P{5p< h}.
Theorem 21 (Jacobson et al. 2005a); Consider a CSA algorithm (with cycle length /) executed with initial
solution generated such that P{D(0,8)} = 1. If Ju(1p) is a geometric random variable with parameter P{z; <
h}, then

Elzs| 15 < h] P{gg< h} + [1 + h /P{tp <h}] P{zp>h}

< E[tg] <E[tp| 1< h] P{rg<h} + [h + 1 + h /P{5s< h}] P{5p> h}.

Theorem 22 shows that the bounds in Theorem 21are tighter than those in Theorem 20.

Theorem 22 (Jacobson et al. 2005a): Consider a CSA algorithm (with cycle length /) executed with initial
solution generated such that P{D"(0,8)}=1.. If Ju(1p) is a geometric random variable with parameter P{zs < 4},
then
Elts| s<h] P{ry<h} +[h+ 1+ h/P{eg<h}]P{es>h} <1+ h/P{5<h}
and
E[Tﬁ] T/jS h] P{T/}S h} + [1 +h/ P{TﬂS h}] P{‘L’/3> h} >1+h [P{T/}> h}/ P{TﬂS h}]

Computational results with the traveling salesman problem to illustrate how the upper and lower bounds
for E[z4] in Theorem 21 can be estimated. The traveling salesman optimization problem (TSP) is a well-
studied NP-hard discrete optimization problem (Lawler et al. 1985). The diversity of applications for the TSP
makes it a frequent choice for testing and evaluating the efficiency and effectiveness of algorithms and
heuristics for intractable discrete optimization problems. Traditional TSP applications can be found in
numerous domains, including -vehicle routing and scheduling problems (Hillier and Lieberman 2001), while
more recent applications include manipulation of robotics (Balaguer et al. 2000), cutting of industrial
components (Foerster and Wischer 1998), and circuit board design (Kobayashi et al. 1999).

To formally describe the TSP, several definitions are needed (Lawler et al. 1985). Define a graph to be a
finite set of vertices, some pairs of which are joined by edges. A circuit in a graph is a set of vertices of the
graph, such that it is possible to move between vertices so that all vertices are encountered exactly once,
finishing at the start. If a circuit contains all the vertices of the graph, it is called a Hamiltonian circuit (or
tour). The usage of the term cities is interchangeable with the term vertices, and if there exists a direct tour
between two cities it is equivalent to the existence of an edge between the two cities. Using this terminology,
the TSP optimization can be formally stated (Garey and Johnson 1979).

39

Traveling Salesman (Optimization) Problem (TSP):
Instance: Given a set of » cities C = {¢,,c;...,c,} and a distance matrix D that represents the cost of traveling

between the cities in the set C.
n-1

Question: Find a Hamiltonian circuit @ = (¢;;,¢p2, ...,¢;) that minimizes fla) =3, D(cj,cji-y) + D(cjncji).
i=]

An instance of a TSP is a discrete optimization problem, where the solution space £ is the set of all possible
Hamiltonian circuits (with each circuit consisting of » cities). The objective function value for each solution
w € £ is the sum of the distances along the circuit. The optimal objective function value corresponds to the
shortest Hamiltonian circuit.

To apply a local search algorithm to a TSP instance, a neighborhood function must be defined. There are
numerous neighborhood functions that have been devised for the TSP. the most commonly used TSP
neighborhood function is 2-Opt (Croes 1958), or more generally, the A-Opt neighborhood functions (Lin and
Kernighan 1973). A modified version of A-Opt randomly selects A unique and nonadjacent cities from the
current solution and randomly permutes and reverses the order of these cities such that the new solution is a
Hamiltonian circuit. CSA with this modified neighborhood function were used for all the computational
experiments reported.

Results are reported with CSA algorithms applied to four TSP instances taken from TSPLIB (Reinelt
1991), ranging in size from 52 cities to 130 cities, with known globally optimal values (see the values under
the problem names in Table 1). Each CSA algorithm execution was initialized with a randomly generated
solution. The CSA algorithm was applied with two different cycle lengths (A = 1000, 2000), each with N =
100 or 1000 inner loop iterations (depending on which TSP instance was being considered), and cyclical
cooling schedule, T(j+1) = #I(y), j = 1,2,...,h-1, which uses a multiplicative cooling factor, y similar to
cooling schedules that are often used for SA implementations in practice (Henderson et al. 2003), where y=
.99 for 5= 1000, and y=.995 for 4 =2000. One thousand replications were executed for each CSA algorithm
formulation, with the initial temperature 7(1) set as the randomly generated initial solution objective function
value.

Since each TSP instance has known globally optimal value, f*, then the values of 8 were chosen to be 1%,
2%, 5%, and 10% above this value (i.e., (1.01)f*, (1.02)7*, (1.05)*, (1.10)/*). Therefore, to estimate the one-
step B-acceptable probability at each iteration, for each values of S, the 0-1 indicator function L{f{aw(i)) < B for
some i = 1,2,...,h] was obtained for each replication » to determine if a circuit with total distance less than or
equal than f was visited over the 4 iterations (each with N = 100 or 1000 inner loop iterations) of the CSA
algorithm. These indicator functions were used to compute the estimator

— 1000
P{y<hi= Y IL{ffo'() < Bforsomej=12,...,h]/1000 (29)
r=1

for the four values of # where @’(j) denotes the best solution visited during those & inner loop iterations
executed with temperature value 7(j). Similarly, for those replications where ffw’(j}) < £ for some j =
1,2,...,h, the actual iteration at which this occurred was used to estimate E[z3 | 75 < #]. In particular, for
replication r, define j(£h) = min{j: flo'G)) < B j = 1,2,...,h}, where j(Bh) =0 if flw’()) > Pforall j =
1,2,...,h. Then

E [l p<h]= 1%)‘,10 J{BR)/ 102010 Liftw’()) < pfor somej=1,2,....4]. 30)

Lower and upper bound estimates for E[z;] using Theorem 21 were then computed by substituting (29) and
(30) for P{zs < h} and E[z3| 73< k], respectively.

To compute sample standard deviation estimates for the lower and upper bounds, one hundred
independent sets of one thousand independent replications of /4 iteration cycles (each with N = 100 or 1000
inner loop iterations), each with a randomly generated initial solution, were executed, to obtain a sample of
one hundred independent observations for the lower and upper bounds (see Table 7), where the associated
point estimates for z; and u are denoted by L and U, respectively, and the associated (sample) standard
deviation estimates for L and U are denoted by s and sg, respectively. All the experiments were executed

on a 2.6MHz Pentium IV with 1024MB of RAM. The CPU times (per set of 1000 replications) for the
computer experiments for each TSP instance for the lower and upper bound estimation experiments ranged
from 353 to 721 CPU seconds for N = 100 and 2993 to 11363 CPU seconds for N = 1000.

~ To assess the validity of the lower and upper bounds interval estimates reported in Table 7, the CSA
algorithms were modified such that several cycles of 4 iterations (each with N = 100 or 1000 inner loop
iterations) were executed until all one thousand replications visited solutions that were within 1% of the
globally optimal value, where each cycle was initialized with a randomly generated initial solution. The
resulting data was then used to compute point estimates for E[z;] and Var[zs], denoted by E [7;] and sz[rﬂ],

40

respectively; see Table 7. In particular, define c; to be the number of cycles (each of length 4) such that all
one thousand replications visited a solution within B of the globally optimal value f*, for g = (1.01)*,
(1.02)F*, (1.05)*, (1.10)/*. The resulting mean and variance estimators are

1000

E[5]= D, jlBcsh)/ 1000 G1)

and
1000

STl= Y. (dBesh) — Enp])° /999, (32)

r=1

where j (B cgh) = min{j: flog) < B j=1,2,..., csh} for replication » = 1,2,...,1000. Therefore, the lower and
upper bound point estimates for E[z5] are compared to the confidence interval estimates for E[zs] obtained
using (31) and (32). The CPU times (per set of 1000 replications) for these computer experiments for each
TSP instance ranged from 1061 to 7175 CPU seconds for N = 100 and 27746 to 1136270 CPU seconds for N
=1000.

For simplicity (i.e., not taking into account the standard deviations of the lower and upper bound
estimates), the lower bound and upper bounds were defined to provide coverage for E[zz] when the 95%
confidence interval estimates for E[z5] had some overlap in the range between the lower bound and the upper

bound points estimates (i.e., fsE[rﬁ]+Ziozss[tB]/\/1000 and ﬁZE[Tﬂ]—Z.Ozss[tB]/\/IOOO ,-where Z s is
the .025 tail probability value for a standard normal random variable.) When coverage occurred, the point
estimates for Efz] in Table 7 are highlighted in bold. From the results in Table 7, for both values of 4, thirty
of the thirty-two lower and upper bound point estimates provided coverage for E[zz]. If the values for the

“sample standard deviation estimates are taken into account, then this fraction of covered values would be
slightly higher. These results suggest that the bound estimators provide reasonable estimates for E[zg].

Table 7: CSA Algorithm Results for E[rg]

Problem
Instance B/7] 7 =1000 h=2000
(L, s) (U,sg) |(Elml, }i—(’,‘(’)—;) (L, s;) (U,sg) [(Elml, }fg%f;)
Berlin52 |1.01] (4543, 37) (5357, 38) (5239, 149) (3980, 19) (5240, 22) (4797, 138)
(7542) |1.02| (3322,26) (4079, 27) (4097, 120) (3284, 13) (4422, 16) (4034, 109)
N=100 {1.05| (1013,3) (1358, 4) (1322, 32) (1606, 2) (1955, 4) (1847, 31)
1.10] (700, 0.2) (716, 0.5) (713, 4) (1347,0.2) (1353, 0.5) (1349, 3)
pr76 | 1.01| (28447,546) | (29412,547) | (26999, 892) (18416, 200) (20217,202) | (19563, 594
(108159) [1.02] (4439, 36) (5247, 38) (4905, 147) (3837, 18) (5065, 21) (4650, 115)
N=100 [1.05| (919,1) (1123, 3) (1082, 18) (1606, 1) (1732, 2) (1712, 17)
1.10] (772,0.1) (774,0.2) (773, 1) (1475, 0.1) (1475, 0.1) (1473, 1)
kroA100 | 1.01] (5297, 51) (6133, 53) (6110, 170) (7003, 43) (8536, 46) (8589, 261)
(21282) |1.02] (1607, 6) (2155, 8) (2064, 52) (2401, 18) (3219, 9) (3061, 69)
N=1000 [1.05| (833,0.2) (878, 1) (884, 8) (1620, 0.2) (1641, 1) (1635, 6)
Lol (779,0.1) (779, 0.1) (778, 1) (1538, 0.1) (1538, 0.1) (1539, 1)
ch130 |1.01((371520, 25968)| (372516, 25968) | (304288,10087) | (366587, 21965) |(368574, 21965)| (297724, 9214)
(6110) {1.02| (24096,394) | (25056,395) | (24685,802) (25153, 292) (27004,294) | (27306, 838)
N=1000 [1.05| (1069, 2) (1384, 3) (1363, 26) (1839, 1) (2150, 4) (2127, 31)
Lol (828,0.1) (829, 0.1) (830,2) (1627,0.1) (1627, 0.1) (1626, 1)

A procedure is described to estimate lower and upper bounds for the expected number of iterations to visit a
Pacceptable solution for the CSA algorithm. Computational results with four traveling salesman problem
instances taken from TSPLIB are reported. Work is in progress to develop new estimators for E[z] that can
be computed in a single algorithm execution, rather than requiring several algorithm execution replications, as
well as provide good estimates for a broader set of cooling schedules. The development of on-line adaptive
procedures that can estimate E[z5] while the algorithm is being executed would enable such information to be
used to determine when the algorithm should be terminated. For example, a single CSA algorithm execution
can be decomposed into its cycles, where (29) and (30) can be computed using each cycle as its own
replication. Then if an algorithm has been executed for 1 iterations, where 7 > kE[z4] for some objective
function value f and some ke Z', and the algorithm has yet to visit a solution with objective function value

41

below B, the algorithm execution should be terminated or restarted with a new initial solution. Results such as
these would be particularly helpful in setting stopping criteria for algorithm runs, since the upper and lower
bounds estimates provide reasonable guidelines for assessing when an algorithm execution has gone on “long
enough” without having visited a solution with a desired or improved objective function value. In addition,
by knowing a priori how many iterations it should take to visit a solution with objective function value f, one
can then plot these values (upper and lower bound estimates versus f3) and fit a regression model to estimate
E[7s) for values of g with P {r; < h} = 0. An interesting by-product of such a curve would be a means to
estimate the global objective function value of the problem instance, and use this information to guide the
execution run length of a CSA algorithm. Extending these results to other hill climbing algorithms would
also be extremely useful.

6. Other Research Results
In addition to the results reported above,, several other results were obtained during the period of the grant.
These results are briefly discussed here.

In the area of algorithm analysis, Armstrong and Jacobson (2004) introduces semi-data-independent order
transformations (SDIOT) such that if problem 4 SDIOT to problem B and B has a semi-reasonable
neighborhood function, where the number of local optima is polynomial, then problem 4 has a semi-
reasonable neighborhood function such that the number of local optima is polynomial. A large class of
optimization problems is given so that every problem in this class SDIOT to Maximum Clause Weighted
Satisfiability (MCWS). Jacobson and Yucesan (2004b) present necessary and sufficient convergence
conditions for generalized hill climbing algorithms. These conditions are shown to be equivalent to necessary
and sufficient convergence conditions for simulated annealing when the generalized hill climbing algorithm is
restricted to simulated annealing. Performance measures are also introduced that permit generalized hill
climbing algorithms to be compared using random restart local search. These results identify a solution
landscape parameter based on the basins of attraction for local optima that determines whether simulated
annealing or random restart local search is more effective in visiting a global optimum. Venkat et al. (2004)
introduce a new algorithm that allows decision-makers to take a large group of Pareto optima and obtain a
subset of Pareto optima solutions, based on the preferences of a decision-maker. An optimization problem
that solves for such quality solutions is formulated. A polynomial Greedy-type heuristic is presented.
Computational results are reported that demonstrate the algorithm’s performance.

In the area of landscape analysis and the NK Kauffman Model, which has been used in theoretical
biology, physics and business organizations to model complex systems with interacting components, Kaul
and Jacobson (2006) report global optima results by transforming the problem into a stochastic network
model! that is closely related to two well-studied problems in operations research. This leads to applicable
strategies for explicit computation of bounds on the global optima particularly with K either small or close to
N. A general lower bound, which is sharp for K=0, is obtained for the expected value of the global optimum
of the NK model. A detailed analysis is provided for the expectation and variance of the global optimum
when K=N-1. The lower and upper bounds on the expectation obtained for this case show that there is a wide
gap between the values of the local and the global optima. They also indicate that the complexity catastrophe
that occurs with the local optima does not arise for the global optima. Kaul and Jacobson (2006) presents new
global optima results for the NK model by developing tools for handling dependency in the cases where K
grows with N. These results generalize previous work that focused on the analysis of the (independent) case
K=N-1. A dependency graph is defined and studied to handle dependencies among underlying random
variables in the NK model. Order statistics (with dependencies) and the expected value of the global optima,
Enx, are bounded using equitable coloring of the dependency graph. These bounds convert the problem of
bounding order statistics of dependent random variables into that of independent random variables while
incorporating quantitative information about the mutual dependencies between the underlying random
variables. An alternative upper bound on Eyx using direct arguments is also proposed. A detailed analysis of
Enx for K close to N is given for underlying uniform and normal distributions. Finally, for bounded
underlying distributions, the global optima are shown to be concentrated around their mean.

Optimal search strategies for conducting reconnaissance, surveillance or search and rescue operations with
limited assets are of significant interest to military decision makers. Multiple search platforms with varying
capabilities can be deployed individually or simultaneously for these operations (e.g., helicopters, fixed wing
or satellite). Due to the timeliness required in these operations, efficient use of available search platforms is
critical to the success of such missions. Designing optimal search strategies over multiple search platforms
can be modeled and solved as a multiple traveling salesman problem (MTSP). Jacobson et al. (2006b)
demonstrate how simultaneous generalized hill climbing algorithms (SGHC) can be used to determine
optimal search strategies over multiple search platforms for the MTSP. Computational results with SGHC
algorithms applied to the MTSP are reported. These results demonstrate that when limited computing budgets
are available, optimal/near-optimal search strategies over multiple search platforms can be obtained more

42

efficiently using SGHC algorithms compared to other generalized hill climbing algorithms. Applications and
extensions of this research to other military applications are also discussed. McLay and Jacobson (2007)
study the Integer Knapsack Problem with Set-up Weights (IKPSW), a generalization of the classical Integer
Knapsack Problem (IKP), where each item type has a set-up weight that is added to the knapsack if any
copies of the item type are in the knapsack solution. The k-item IKPSW ((IKPSW) is also considered, where
a cardinality constraint imposes a value & on the total number of items in the knapsack solution. IKPSW and
KIKPSW have applications in the area of aviation security. This paper provides dynamic programming
algorithms for each problem that produce optimal solutions in pseudo-polynomial time. Moreover, four
heuristics are presented that provide approximate solutions to IKPSW and AIKPSW. For each problem, a
Greedy heuristic is presented that produces solutions within a factor of 1/2 of the optimal solution value, and
a fully polynomial time approximation scheme (FPTAS) is presented that produces solutions within a factor
of ¢ of the optimal solution value. Time and space requirements for the FPTAS for IKPSW and AIKPSW are
also reported.

In the area of aviation security system design and analysis, Candalino et al. (2004) introduce a
comprehensive cost function that not only includes direct costs associated with the purchase and operation of
baggage screening security devices, but also includes indirect costs associated with device errors. A
methodology is presented to determine the best selection of baggage screening security devices that
minimizes the expected annual total cost of a baggage screening strategy. Computational experiments with
this methodology are presented. Jacobson et al. (2005b) analyze checked baggage screening strategies that
incorporate the effects of deterrence for explosive detection systems (EDSs) deployed at airports. Cost
models for these strategies are presented that incorporate the cost of purchasing, operating, and maintaining
an EDS, the number of checked bags available to be screened, and the numbers of selectee and non-selectee
checked bags actually screened over a one-year period. The model also includes the effect of deterrence on
the level of threat at an airport. The cost models provide a quantitative tool to assess the strategy of 100%
screening of all checked bags, as set forth by the United States Aviation and Transportation Security Act. The
key conclusion from this analysis is that the cost effectiveness of 100% screening of all checked bags
compared to screening only checked selectee bags depends on how quickly an increase in the number of
checked bags screened reduces the threat level (i.e., the deterrence effect). Comparing the expected direct
cost per expected prevented attack to the expected cost of an aviation terrorist incident provides an indication
of the cost effectiveness of 100% checked bag screening. Jacobson et al. (2005c) present NP-complete
decision problems concerning the deployment and utilization of baggage screening security devices. These
problems incorporate three different deployment performance measures: uncovered baggage segments,
uncovered flight segments, and uncovered passenger segments. Integer programming models are formulated
to address optimization versions of these problems and to identify optimal baggage screening security device
deployments (i.e., determine the number and type of baggage screening security devices that should be placed
at different airports, and determining which baggage should be screened with such devices). The models are
illustrated with an example that incorporates data extracted from the Official Airline Guide (OAG). Jacobson
et al. (2005d) report results of using operations research methodologies to design and analyze aviation
security baggage screening systems. In the aftermath of the tragic events of September 11, 2001, numerous
changes have been made to aviation security policy and operations throughout the nation’s airports. The
allocation and utilization of checked baggage screening devices is a critical component in aviation security
systems. This paper formulates problems that model multiple sets of flights originating from multiple stations
(e.g., airports, terminals), where the objective is to optimize a baggage screening performance measure
subject to a finite amount of resources. These measures include uncovered flight segments (UFS) and
uncovered passenger segments (UPS). Three types of multiple station security problems are identified and
their computational complexity is established. The problems are illustrated on two examples that use data
extracted from the Official Airline Guide. The examples indicate that the problems can provide widely
varying solutions based on the type of performance measure used and the restrictions imposed by the security
device allocations. Moreover, the examples suggest that the allocations based on the UFS measure also
provide reasonable solution with respect to the UPS measure; however, the reverse may not be the case. This
suggests that the UFS measure may provide more robust screening device allocations. Jacobson et al. (2006a)
evaluate the cost-effectiveness of the explosive detection technologies currently deployed to screen checked
baggage as well as new technologies that could be used in the future. Both single-device and two-device
systems are considered. In particular, the expected annual direct cost of using these devices for 100%
checked baggage screening under various scenarios is obtained and the tradeoffs between using single-device
and two-device strategies are studied. The expected number of successful threats under the different checked
baggage screening scenarios with 100% checked baggage screening is also obtained. Lastly, a risk-based
screening strategy proposed in the literature is analyzed. The results reported suggest that for the existing
security setup, with current device costs and probability parameters, single-device systems are less costly and

43

have fewer expected number of successful threats than two-device systems due to the way the second device
affects the alarm or clear decision. The risk-based approach is found to have the potential to significantly
improve security. The cost model introduced provides an effective tool for the execution of cost-benefit
analyses of alternative device configurations for aviation checked baggage security screening. McLay et al.
(2006) introduce the Multilevel Allocation Problem (MAP), which models the screening of passengers and
baggage in a multilevel aviation security system. A passenger is screened by one of several classes, each of
which corresponds to a set of procedures using security screening devices, where passengers are differentiated
by their perceived risk levels. Each class is defined in terms of its fixed cost (the overhead costs), its marginal
cost (the additional cost to screen a passenger), and its security level. The objective of MAP is to assign each
passenger to a class such that the total security is maximized subject to passenger assignments and budget
constraints. This paper shows that MAP is NP-hard and introduces a Greedy heuristic that obtains
approximate solutions to MAP that use no more than two classes. Examples are constructed using data
extracted from the Official Airline Guide. Analysis of the examples suggests that fewer security classes for
passenger screening may be more effective and that using passenger risk information can lead to more
effective security screening strategies. McLay et al. (2007) introduce the Multilevel Passenger Screening
Problem (MPSP). In MPSP, a set of classes are available for screening passengers, each of which corresponds
to several device types for passenger screening, where each device type has an associated capacity and
passengers are differentiated by their perceived risk levels. The objective of MPSP is to use prescreening
information to determine the passenger assignments that maximize the total security subject to capacity and
assignment constraints. MPSP is illustrated with examples that incorporate flight schedule and passenger
volume data extracted from the Official Airline Guide.

In the area of random number generation, Smith and Jacobson (2005) introduce and study a discrete
optimization problem related to the alias method for discrete random number generation. The alias method is
an efficient method to generate several random variates from a discrete probability distribution. The
efficiency of the alias method can be improved by designing the alias table such that the expected number of
computations that must be performed per value generated is minimized. The problem of optimizing the
construction of the alias table is proven to be strongly NP-Hard, even if either of two variations of the alias
method relaxing the alias table generation restrictions are used. Integer programming formulations describing
these three optimization problems are presented, and insights regarding necessary optimality criteria and
relationships among their optimal solutions are discussed.

REFERENCES

E. Aarts, J. Korst, 2002, “Selected Topics in Simulated Annealing,” Chapter 1 in Essays and Surveys on
Metaheuristics (P. Hansen, C.C. Ribeiro, Editors), Kluwer Academic Publishers, Norwell, Massachusetts,
1-37.

E. Aarts, LK. Lenstra. 1997. Local Search in Combinatorial Optimization, Wiley and Sons, New York.

N. Abboud, M. Sakawa, M. Inuiguchi, 1998, “School Scheduling Using Threshold Accepting,” Cybernetics
and Systems, 29(6): 593-611.

R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, 2003, “A Survey of Very Large-Scale Neighborhood Search
Techniques,” Discrete Applied Mathematics, 23, 75 — 102,

S. Anily, A. Federgruen, 1987, “Simulated Annealing Methods with General Acceptance Probabilities,”
Journal of Applied Probability, 24, 657-667.

D.E. Armstrong, S.H. Jacobson, 2004, “Polynomial Transformations and Data-Independent Neighborhood
Functions,” Discrete Applied Mathematics, 143(1-3), 272-284.

D.E. Armstrong, S.H. Jacobson, 2005, “Data Independent Neighborhood Functions and Strict Local Optima,”
Discrete Applied Mathematics, 146(3), 233-243.

D.E. Armstrong, S.H. Jacobson, 2006a, “Order Preserving Reductions and Polynomial Improving Paths,”
Operations Research Letters 34(1), 9-16.

D.E. Armstrong, S.H. Jacobson, 2006b, “Analyzing the Complexity of Finding Good Neighborhood
Functions for Local Search Algorithms,” Journal of Global Optimization, 36(2), 219-236.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, 1999, “Complexity
and Approximation: Combinatorial Optimization Problems and Their Approximability Properties,”
Springer-Verlag, Berlin.

G. Ausiello, P. Crescenzi, M. Protasi, 1995, “Approximate Solution of NP Optimization Problems,”
Theoretical Computer Science, 150, 1-55.

C. Balaguer, A. Gimenez, J.M., Pastor, V.M. Padrén and M. Abderrahim, 2000, “A Climbing Autonomous
Robot for Inspection Applications in 3D Complex Environments,” Robotica, 18, 287-297.

J.W. Barnes, J.B. Chambers, 1995, “Solving the Job-Shop Scheduling Problem with Tabu Search,” IIE
Transactions, 27, 257-263.

P. Billingsley, 1979, Probability and Measure, John Wiley and Sons, New York.

3 [» .

44

T.J. Candalino, J.E. Kobza, S.H. Jacobson, 2004, “Designing Optimal Aviation Baggage Screening Systems
using Simulated Annealing," Computers and Operations Research, 31(10), 1753-1767.

O. Cantoni, R. Cerf, 1997, “The Exit Path of a Markov Chain with Rare Transitions,” ESAIM: Probability
and Statistics, 1, 95-144.

I. Charon, O. Hudry, 2001, “The Noising Method: A Generalization of Some Metaheuristics,” European
Journal of Operational Research, 135(1), 86-101.

T.S. Chiang, Y.Y. Chow, 1989, “A Limit-Theorem for a Class of Inhomogeneous Markov-Processes,” Annals
of Probability, 17, 1483-1502.

H. Cohn, M. Fielding, 1999, “Simulated Annealing: Searching for an Optimal Temperature Schedule,” SIAM
Journal of Optimization, 9(3), 779-802.

S.A. Cook, 1971, “The Complexity of Theorem-Proving Procedures,” Proceedings of the Third Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York, 151-158.

P. Crescenzi, L. Trevisan, 2000, “On Approximation Scheme Preserving Reducibility and its Applications,”
Theory of Computing Systems, 33, 1-16.

G.A. Croes, 1958, “A Method for Solving Transportation-Salesman Problems,” Operations Research, 6, 791-
812.

M.P. Desai, 1999, “Some Results Characterizing the Finite Time Behaviour of the Simulated Annealing
Algorithm,” Sadhana, 24, 317-337.

G. Dueck, T. Scheuer, 1990, “Threshold Accepting: A General Purpose Optimization Algorithm Appearing
Superior to Simulated Annealing,” Journal of Computational Physics, 90, 161-175.

U. Faigle, W. Kern, 1992, “Some Convergence Results for Probabilistic Tabu Search,” ORSA4 Journal on
Computing, 4(1), 32-37. :

U. Faigle, R. Schrader, 1988, “On the Convergence of Stationary Distributions in Simulated Annealing
algorithms,” Information Processing Letters, 27, 189-194.

A.G. Ferreira, J. Zerovnik, 1993, “Bounding the Probability of Success of Stochastic Methods for Global
Optimization,” Computers with Mathematics Applications, 25(10/11), 1-8. _

M. Fielding, 2000, “Simulated Annealing with an Optimal Fixed Temperature,” SIAM Journal of
Optimization, 11(2), 289-307.

M. Fleischer, S.H. Jacobson, 1999, “Information Theory and the Finite-Time Behavior of the Simulated
Annealing Algorithm: Experimental Results,” INFORMS Journal on Computing, 11, 35-43.

H. Foerster and G. Wascher, 1998, “Simulated Annealing for Order Spread Minimization in Sequencing
Cutting Patterns,” European Journal of Operational Research, 126, 106-130.

B.L. Fox, 1993, “Integrating and Accelerating Tabu Search, Simulated Annealing, and Genetic Algorithms,”
Annals of Operations Research, 41, 47-67.

A. Franz K.H. Hoffmann, P. Salamon, 2001, “Best Possible Strategy for Finding Ground States,” Physical
Review Letters, 86(23), 5219-5222.

M.R. Garey, D.S. Johnson, 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman and Company, New York.

F. Glover, 1977, “Heuristics for Integer Programming Using Surrogate Constraints,” Decision Sciences, 8,
156-166.

F. Glover, 1986, “Future Paths for Integer Programming and Links to Artificial Intelligence,” Computers and
Operations Research, 13(5), 533-549.

F. Glover, 1989, “Tabu Search-Part 1,” ORSA Journal on Computing, 1(3), 190-206.

F. Glover, M. Laguna. 1997. Tabu Search. Kluwer Academic Publishing, Norwell, MA.

J. Gu, 1997, “Multispace Search for Satisfiability and NP-hard Problems,” D. Du, J. Gu, P.M. Pardalos, Eds.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 35: Satisfiability
Problem: Theory and Applications: Proceedings of a DIMACS Workshop, March 11-13, 1996. American
Mathematical Society. Providence, RI. 407-517.

B. Hajek, 1988, "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, 13,.311-
329.

D. Henderson, S.H. Jacobson, A.W. Johnson, 2003, “The Theory and Practice of Simulated Annealing,” F.
Glover, G. Kochenberger, Eds. State-of-the-Art Handbook in Metaheuristics. Kluwer Academic Publishing,
Norwell, MA. 287-319.

F.S. Hillier, G.J. Lieberman, 2001, Introduction to Operations Research, McGraw Hill, Boston,
Massachusetts.

D. Isaacson, R. Madsen, 1985, Markov Chains Theory and Applications. Robert E. Krieger Publishing Co.,
Inc., Malabar, FL.

S.H. Jacobson, S.N. Hall, L.A. McLay, J.E. Orosz, 2005a, “Performance Analysis of Cyclic Simulated
Annealing Algorithms,” Methodology and Computing in Applied Probability, 7(2), 183-201.

S. H. Jacobson, T. Karnani, J.E. Kobza, 2005b, "Assessing the Impact of Deterrence on Aviation Checked

45

Baggage Screening Strategies," International Journal of Risk Assessment and Management, 5(1), 1-15.

S.H. Jacobson, T. Karnani, J.E. Kobza, L. Ritchie, 2006a, “A Cost-Benefit Analysis of Alternative Device
Configurations for Aviation Checked Baggage Security Screening,” Risk Analysis 26(2), 297-310.

S.H. Jacobson, L.A. McLay, S.N. Hall, D. Henderson, D.E. Vaughan, 2006b, “Optimal Search Strategies
Using Simultaneous Generalized Hill Climbing Algorithms,” Mathematical and Computer Modelling,
43(9-10), 1061-1073.

S.H. Jacobson, L.A. McLay, J.E. Kobza, .M. Bowman, 2005¢, “Modeling and Analyzing Multiple Station
Baggage Screening Security System Performance,” Naval Research Logistics, 52(1), 30-45.

S.H. Jacobson, L.A. McLay, J.L. Virta, J.E. Kobza, 2005d, “Integer Program Models for the Deployment of
Airport Baggage Screening Security Devices," Optimization and Engineering 6(3), 339-359.

S.H. Jacobson, D. Solow, 1993, "The Effectiveness of Finite Improvement Algorithms for Finding Global
Optima,” Zeitschrift fur Operations Research (ZOR) -- Methods and Models of Operations Research, 37(3),
257-272.

S.H. Jacobson, K.A. Sullivan, A.W. Johnson, 1998, “Discrete Manufacturing Process Design Optimization
using Computer Simulation and Generalized Hill Climbing Algorithms,” Engineering Optimization, 31,
247-260.

S.H. Jacobson, E. Yucesan, 2004a, “Global Optimization Performance Measures for Generalized Hill

Climbing Algorithms,” Journal of Global Optimization, 29, 177-193.

S.H. Jacobson, E. Yucesan, 2004b, "Analyzing the Performance of Generalized Hill Climbing Algorithms,"
Journal of Heuristics, 10, 387-405.

A.W. Johnson, S.H. Jacobson, 2002a, “On the Convergence of Generalized Hill Climbing Algorithms,”
Discrete Applied Mathematics, 119(1-2), 37-57.

A.W. Johnson, S.H. Jacobson, 2002b, “A Class of Convergent Generalized Hill Climbing Algorithms,”
Applied Mathematics and Computation, 125(2-3), 359-373.

D.S. Johnson, C.H. Papadimitriou, M. Yannakakis, 1988, “How Easy is Local Search?" Journal of Computers
and Systems Science, 37(1), 79-100.

H. Kaul, S.H. Jacobson, 2006, “Global Optima Results for the Kauffman NK Model,” Mathematical
Programming, 106(2), 319-338.

Kaul, H., Jacobson, S.H., 2007, “New Global Optima Results for the Kauffman NK Model: Handling
Dependency,” Mathematical Programming, 108(2-3), 475-494.

S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, 1983, “Optimization by Simulated Annealing,” Science, 220,
671-680.

S. Kobayashi, M. Edahiro, M. Kubo, 1999, “A VLSI Scan-Chain Optimization Algorithm for Multiple Scan-
Paths,” IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Science, 11,
2499-2504.

E.L. Lawler, L.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, 1985, The Traveling Salesman Problem. John
Wiley and Sons, Chichester, U.K.

S. Lin, B.W. Kernighan, 1973, “An Effective Heuristic for the Traveling Salesman Problem,” Operations
Research, 21, 498-516.

R. Marti, 2003, “Multi-start Methods,” Chapter 12 in Handbook on Metaheuristics, F. Glover and G.
Kochenberger, Editors, Kluwer Academic Publishers, Norwell, Massachusetts, 355-368.

C. Mazza, 1992, “Parallel Simulated Annealing,” Random Structures and Algorithms, 3, 139-148.

L.A. Mclay, S.H. Jacobson, 2007, “Integer Knapsack Problems with Set-Up Weights,” Computational
Optimization and Applications (Accepted).

L.A. McLay, S.H. Jacobson, J.E. Kobza, 2006, “A Multilevel Passenger Prescreening Problem for Aviation
Security,” Naval Research Logistics, 53(3), 183-197.

L.A. McLay, S.H. Jacobson, J.E. Kobza, 2007, “Integer Programming Models and Analysis for a Multilevel
Passenger Screening Problem, “IIE Transactions, 39(1), 73-81.

D. Mitra, F. Romeo, A.L. Sangiovanni-Vincentelli, 1986, "Convergence and Finite-time Behavior of
Simulated Annealing," Advances in Applied Probability, 18, 747-771.

V. Nissen, H. Paul, 1995, “A Modification of Threshold Accepting and its Application to the Quadratic
Assignment Problems,” OR Spekrum, 17(2-3), 205-210.

A. Nolte, R. Schrader, 2001, “A Note on the Finite Time Behavior of Simulated Annealing,” Mathematics of
Operations Research, 25(3), 476-484.

J.E. Orosz, S.H. Jacobson, 2002a, "Finite-time Performance Analysis of Static Simulated Annealing
Algorithms," Computational Optimization and Applications, 21(1), 21-53.

Orosz, JLE., S.H. Jacobson, 2002b, “Analysis of Static Simulated Annealing Algorlthms " Journal of
Optzmzzatton Theory and Application, 115(1), 165-182.

C.H. Papadimitriou, K. Steilglitz, 1978, “Some Examples of Difficult Traveling Salesman Problems,”
Operations Research, 26, 434-44,

O

*n

A

A

46

C.H. Papadimitriou, K. Steilglitz, 1982, Combinatorial Optimization: Algorithms and Complexity, Prentice-
Hall, Englewood Cliffs, NJ.

G. Reinelt, 1991, "A Traveling Salesman Problem Library", ORSA Journal on Computing, 3(4), 376-385

V. Rodl, C.A. Tovey, 1987, “Multiple Optima in Local Search,” Journal of Algorithms, 8, 250-259.

H.L. Royden, 1988. Real Analysis. Macmillan Publishing Company, New York.

S. Savage, P. Weiner, A. Bagchi, 1976, “Neighborhood Search Algorithms for Guaranteeing Optimal
Traveling Salesman Tours Must be Inefficient,” Journal of Computer Systems Science, 12, 25-35.

B. Selman, H. Levesque, D. Mitchell, 1992, A New Method for Solving Hard Satisfiability Problems,”
Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI Press. San Jose, CA. 440-
446.

J.C. Smith, S.H. Jacobson, 2005, “An Analysis of the Alias Method for Discrete Random Number
Generation, “ INFORMS Journal on Computing, 17(3), 321-327..

S. Smith, C.C. Cheng, 1993, “Slack-based Heuristics for Constraint Satisfaction Scheduling,” Proceedings of
the Eleventh National Conference on Artificial Intelligence. Alll Press. Washington, DC. 440-446.

R. Srichander, 1995, “Efficient Schedules for Simulated Annealing,” Engineering Optimization, 24, 161-176.

K.A. Sullivan, S.H. Jacobson, 2001, "A Convergence Analysis of Generalized Hill Climbing Algorithms"
IEEE Transactions on Automatic Control, 46(8), 1288-1293.

C.A. Tovey, 1985, “Hill Climbing with Multiple Local Optima,” SIAM Journal of Algebraic Discrete
Methods, 6, 384-393.

D.E. Vaughan, S.H. Jacobson, D.E. Armstrong, 2000, “A New Neighborhood Function for Discrete
Manufacturing Process Design Optimization using Generalized Hill Climbing Algorithms, ASME Journal
of Mechanical Design, 122, 164-171.

D.E. Vaughan, S.H. Jacobson, 2004, “Formulating the Meta-heuristic Tabu Search in the Generalized Hill
Climbing Framework,” Methodology and Computing in Applied Probability, 6, 343-354.

D.E. Vaughan, S.H. Jacobson, S.N. Hall, L.A. McLay, 2005, "Simultaneous Generalized Hill Climbing
Algorithms for Addressing Sets of Discrete Optimization Problems," INFORMS Journal on Computing,
17(4), 438-450.

D.E. Vaughan, S.H. Jacobson, H Kaul, 2007, "Analyzing the Performance of Simultaneous Generalized Hill
Climbing Algorithms," Computational Optimization and Applications (Accepted).

V. Venkat, S.H. Jacobson, J.A. Stori, 2004, “A Post-Optimality Analysis Algorithm for Multi-Objective
Optimization," Computational Optimization and Applications, 28(3), 357-372.

V.G. Vizing, 1977, “Complexity of the Traveling Salesman Problem in the Class of Monotonic Improvement
Algorithms, Cybernetics, 13, 623-626.

M. Yannakakis, 1997, “Computational Complexity,” in: J.K. Lenstra and E. Aarts, eds., Local Search in
Combinatorial Optimization (John Wiley & Sons, Chichester, 1997) 19-55.

X. Yao, 1995, “A New Simulated Annealing Algorithm,” International Journal of Computer Mathematics,
56, 161-168.

X. Yao, G. Li, 1991, “General Simulated Annealing,” Journal of Computer Science and Technology, 6, 329-
338.

W. Zhang, T.G. Dietterich, 1997, “Solving Combinatorial Optimization Tasks by Reinforcement Learning: A
General Methodology Applied to Resource-constrained Scheduling,” Technical Report, Department of
Computer Science, Oregon State University, Corvallis, OR.

CONTRIBUTING PERSONNEL

The principal investigator for this project, Sheldon H. Jacobson, Ph.D., has devoted both academic year time
and summer time in each of the three years of this project. Colonel Darrall Henderson, US Army, Ph.D.,
Derek E. Armstrong, Ph.D., Los Alamos National Laboratory, and Diane E. Vaughan, Ph.D., Los Alamos
National Laboratory, have provided input on this project. Laura A. McLay, Ph.D., Hemanshu Kaul, Ph.D.,
and Major Shane N. Hall, USAF, PhD., were Ph.D. students of the principal investigator, who worked on
aspects of this project. Mr. Alex Nikolaev, Mr. Gio Kao, and Mr. Adrian Lee are current graduate students of
the principal investigator who have also contributed to various aspects of this project.

TRANSITIONS

Extensive interactions with Austral Engineering and Software, Incorporated, have resulted in generalized hill
climbing algorithm software code and post-optimality analysis software code (for multi-critieria optimization)
being shared with them. These algorithms and software are available for them to use in support of their SBIR
activities with the military (Contact: Daniel Allwine).

Research on deterrence modeling and analysis has been transitioned to the Homeland Security Institute within
the United States Department of Homeland Security (Contact: Marc Thibault, Ph.D.).

S

e

47

PUBLICATIONS

The following is a list of published papers in refereed journals or book chapters that are related to the research
effort supported in whole or in part by this grant.

Armstrong, D.E., Jacobson, S.H., 2004, “Polynomial Transformations and Data Independent Neighborhood
Functions,” Discrete Applied Mathematics, 143(1-3), 272-284.

Armstrong, D.E., Jacobson, S.H., 2005, “Data Independent Neighborhood Functions and Strict Local
Optima,” Discrete Applied Mathematics, 146(3), 233-243

Armstrong, D.E., Jacobson, S.H., 2006, “Order Preserving Reductions and Polynomial Improving Paths,”
Operations Research Letters, 34(1), 9-16.

Armstrong, D.E., Jacobson, S.H., 2006, “Analyzing the Complexity of Finding Good Neighborhood
Functions for Local Search Algorithms,” Journal of Global Optimization, 36(2), 219-236.

Candalino, T.J., Kobza, J.E., Jacobson, S.H., 2004, “Designing Optimal Aviation Baggage Screening Systems
using Simulated Annealing," Computers and Operations Research, 31(10), 1753-1767.

Jacobson, S.H., Hall, S.N., McLay, L.A., Orosz, J.E., 2005, “Performance Analysis of Cyclic Simulated
Annealing Algorithms,” Methodology and Computing in Applied Probability, 7(2), 183-201.

Jacobson, S.H., Karnani, T., Kobza, J.E., 2005, "Assessing the Impact of Deterrence on Aviation Checked
Baggage Screening Strategies," International Journal of Risk Assessment and Management, 5(1), 1-15.

Jacobson, S.H., Karnani, T., Kobza, J.E., Ritchie, L., 2006, “A Cost-Benefit Analysis of Alternative Device
Configurations for Aviation Checked Baggage Security Screening,” Risk Analysis, 26(2), 297-310.

Jacobson, S.H., McLay, L.A., Virta, J.L., Kobza, J.E., 2005, “Integer Program Models for the Deployment of
Airport Baggage Screening Security Devices," Optimization and Engineering, 6(3), 339-359.

Jacobson, S.H., McLay, L.A., Hall, S.N., Henderson, D., Vaughan, D.E., 2006, “Optimal Search Strategies
Using Simultaneous Generalized Hill Climbing Algorithms,” Mathematical and Computer Modelling, 43(9-
10), 1061-1073.

Jacobson, S.H., Yucesan, E., 2004, "Global Optimization Performance Measures for Generalized Hill
Climbing Algorithms," Journal of Global Optimization, 29(2), 177-193.

Jacobson, S.H., Yucesan, E., 2004, "Analyzing the Performance of Generalized Hill Climbing Algorithms,"
Journal of Heuristics, 10(4), 387-405.

Jacobson, S.H., McLay, L.A., Kobza, J.E., Bowman, J.M., 2005, “Modeling and Analyzing Multiple Station
Baggage Screening Security System Performance," Naval Research Logistics, 52(1), 30-45.

Kaul, H., Jacobson, S.H., 2006, “Global Optima Results for the Kauffman NK Model,” Mathematical
Programming, 106(2), 319-338.

Kaul, H., Jacobson, S.H., 2007, “New Global Optima Results for the Kauffman NK Model: Handling
Dependency,” Mathematical Programming, 108(2-3), 475-494.

Mclay, L.A., Jacobson, S.H., 2007, “Integer Knapsack Problems with Set-Up Weights,” Computational
Optimization and Applications (Accepted).

McLay, L.A., Jacobson, S.H., Kobza, J.E., 2006, “A Multilevel Passenger Prescreening Problem for Aviation
Security,” Naval Research Logistics, 53(3), 183-197.

McLay, L.A., Jacobson, S.H., Kobza, J.E., 2007, “Integer Programming Models and Analysis for a Multilevel
Passenger Screening Problem,” IIE Transactions, 39(1), 73-81.

Smith, J.C., Jacobson, S.H., 2005, “An Analysis of the Alias Method for Discrete Random Number .
Generation,” INFORMS Journal on Computing, 7(3), 321-327.

Vaughan, D.E., Jacobson, S.H., 2004, "Formulating the Meta-Heuristic Tabu Search in the Generalized Hill
Climbing Framework," Methodology and Computing in Applied Probability, 6(3), 343-354.

Vaughan, D.E., Jacobson, S.H., Hall, S.N., McLay, L.A., 2005, "Simultaneous Generalized Hill Climbing
Algorithms for Addressing Sets of Discrete Optimization Problems," INFORMS Journal on Computing,
7(4), 438-450.

Vaughan, D.E., Jacobson, S.H., Kaul, H., 2007, "Analyzing the Performance of Simultaneous Generalized
Hill Climbing Algorithms,” Computational Optimization and Applications, (Accepted).

Venkat, V., Jacobson, S.H., Stori, J.A., 2004, “A Post-Optimality Analysis Algorithm for Multi-Objective
Optimization," Computational Optimization and Applications, 28(3), 357-372.

48

HONORS/AWARDS

Sheldon H. Jacobson, Ph.D., was renamed a Willett Faculty Scholar in the College of Engineering at the
University of Illinois for the 2005-2008 academic years. This designation is given to tenured faculty who are
excelling in their contributions to the university. Approximately twenty faculty have been awarded this
distinction, based on their record of research accomplishments and achievements.

Laura A. McLay, Ph.D., was awarded honorable mention in the 2006 INFORMS Computing Society Student
Paper Competition, based on research reported in her paper, “Integer Knapsack Problems with Set-Up
Weights.”

Laura A. McLay, Ph.D., was awarded the 2005 Harper Safety Award from the Department of Mechanical and
Industrial Engineering at the University of linois.

Major Shane N. Hall, USAF, Ph.D. was awarded the 2006 Harper Safety Award from the Department of
Mechanical and Industrial Engineering at the University of Illinois.

